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Abstract—Many contemporary applications feature multi-megabyte instruction footprints that overwhelm the capacity of branch target
buffers (BTB) and instruction caches (L1-I), causing frequent front-end stalls that inevitably hurt performance. BTB is crucial for
performance as it enables the front-end to accurately resolve the upcoming execution path and steer instruction fetch appropriately.
Moreover, it also enables highly effective fetch-directed instruction prefetching that can eliminate many L1-1 misses. For these reasons,
commercial processors allocate vast amounts of storage capacity to BTBs. This work aims to reduce BTB storage requirements by
optimizing the organization of BTB entries. Our key insight is that today’s BTBs store the full target address for each branch, yet the
vast majority of dynamic branches have short offsets requiring just a handful of bits to encode. Based on this insight, we organize the
BTB as an ensemble of smaller BTBs, each storing offsets within a particular range. Doing so enables a dramatic reduction in storage
for target addresses. We also compress tags to reduce the tag storage cost. Our final design, called BTB-X, uses an ensemble of five
BTBs with compressed tags that enables it to track 2.8x more branches than a conventional BTB with the same storage budget.

Index Terms—Server, Microarchitecture, Branch Target Buffer (BTB), Instruction Cache, Prefeteching.

1 INTRODUCTION

Contemporary server applications feature massive instruction
footprints stemming from deeply layered software stacks.
These footprints may far exceed the capacity of the branch
target buffer (BTB) and instruction cache (L1-I), resulting in the
so-called front-end bottleneck. BTB misses may lead to wrong-
path execution, triggering a pipeline flush when misspeculation
is detected. Such pipeline flushes not only throw away tens of
cycles of work but also expose the fill latency of the pipeline.
Similarly, L1-I misses cause the core front-end to stall for tens of
cycles while the miss is being served from lower-level caches.

BTB stands at the center of a high-performance core front
end for three key reasons: it determines the instruction stream
being fetched, it identifies branchs for the branch predictor, and
it affects the L1-I hit rate. Specifically, by identifying control
flow divergences, the BTB ensures that the branch predictor
can make predictions for upcoming conditional branches. For
predicted-taken and unconditional branches, the BTB supplies
targets to which instruction fetch should be redirected. Finally,
the BTB together with the direction predictor enables an im-
portant class of instruction prefetchers called fetch-directed
instruction prefetchers (FDIP) [6], [7], [9], which rely on the
BTB to discover L1-I prefetch candidates.

Considering the criticality of capturing the large branch
working sets of modern workloads, commercial CPUs feature
BTBs with colossal capacities, a trend also observed by [5].
Thus, IBM z-series processors [3], AMD Zen-2 [11], and ARM
Neoverse N1 [8] feature 24K-entry, 8.5K-entry, and 6K-entry
BTBs. With each BTB entry requiring 10 bytes or more (Sec-
tion 2), BTB storage costs can easily reach into tens and even
hundreds of KBs. Indeed, the Samsung Exynos M6 mobile
processor allocates a staggering 529KB of on-chip storage to
BTBs [4]. While such massive BIBs are effective at capturing
branch working sets, they do so at staggering area costs.

This work seeks to reduce BTB storage requirements by
increasing its branch density, defined as branches per KB of stor-
age. To that end, we aim to reorganize individual BTB entries
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to minimize their storage cost. Our key insight is that branch
offsets, defined as delta between the address of the branch
instruction and that of its target, are unequally distributed but
tend to require significantly fewer bits to represent than full
target addresses. Our analysis reveals that 37% of dynamic
branches require only 7 bits or fewer for offset encoding, while
a meager 1% of branches need 25 bits or more to store their
offsets.

Based on this insight, we propose to store offsets in the
BTB rather than full target addresses, which can be up to 64
bits long depending on the size of virtual address space. To
accommodate the varied distribution of branch offsets, we par-
tition the BTB into several smaller BTBs, each storing only those
branches whose target offsets can be encoded with a certain
number of bits. Because the target field accounts for over half
of each entry’s storage budget in a conventional BTB (Figure 1),
this optimization brings significant storage savings. We further
observe that the tag field is the second-largest contributor to
each BTB entry’s storage requirement. To reduce this cost, we
propose compressing the tags through the use of hashing.

Our final design, called BTB-X, uses an ensemble of five
BTBs, each with 16-bit tags. The BTBs differ only in the number
of bits they allocate for branch target offsets. Our evaluation
shows that BTB-X can track over 2.8x more branches than a
conventional BTB with the same storage budget. Conversely,
BTB-X can accommodate the same number of branches as
existing BTBs while requiring 2.8x less storage.

2 BACKGROUND

Branch Target Buffer (BTB): BTB is used in the core front-end
to identify whether a program counter (PC) corresponds to a
branch instruction before the instruction itself is even fetched.
As depicted in Figure 1, each BTB entry is composed of tag, type,
and target fields. BTB is indexed with the lower order PC bits
and tag field of the indexed entry is compared with the higher
order PC bits. A match indicates that the PC belongs to a branch
instruction. The type field of the indexed BTB entry determines
whether the branch is a call, return, conditional, or uncondi-
tional branch. The branch type determines whether the branch
direction (taken/not taken) needs to be predicted and where
its target address is found. Call, return, and unconditional



Tag: 39 bits |Type: 2 bits| Target: 46 bits

Fig. 1: BTB entry composition in a conventional BTB.

branches are always taken, whereas for conditional branches,
a direction predictor is used to predict their direction. If the
branch is predicted to be taken, target field in the BTB entry
provides the address for the next instruction, except for returns.
This is because a given function can be called from different
call sites; as such, the return address is call-site dependent.
Therefore, a return address stack (RAS) is typically employed
to record return addresses at call-sites. On a function call, the
call instruction pushes the return address to RAS, which is later
popped by the corresponding return instruction.

The cost of a BTB miss: A BTB miss for a branch instruc-
tion means that the branch is undetected and the front-end
continues to fetch instructions sequentially. Whether or not
the sequential path is the correct one depends on the actual
direction of the missed branch. Unless the missed branch is
a conditional branch that is not taken, the sequential path is
incorrect. When the wrong path is eventually detected by the
core, all the instructions after the branch that missed in the
BTB are flushed, fetch is redirected to the branch target and
pipeline is filled with correct-path instructions. BTB misses are
thus highly deleterious to performance as they result in a loss
of tens of cycles of work and expose the pipeline fill latency.
BTB’s role in instruction prefetching: Fetch-directed instruc-
tion prefetchers are a class of powerful L1-I prefetchers that
intrinsically rely on a BTB. These prefetchers are highly effective
and, when coupled with a sufficiently large BTB, outperform
the winner of the recently-concluded Instruction Prefetching
Championship [2], as reported by Ishii et al. [5]. Variants of
these prefetchers have been adopted in commercial products,
for example in IBM z15 [10], ARM Neoverse N1 [8] etc.

Figure 2 shows a canonical organization of a fetch-directed
instruction prefetcher (FDIP) [9]. As originally proposed, FDIP
decouples the branch-prediction unit and the fetch engine via
the fetch target queue (FTQ). This decoupling allows the branch
prediction unit to run ahead of the fetch engine and discover
prefetch candidates by predicting the control flow far into the
future. With FDIP, each cycle, the branch prediction unit iden-
tifies and predicts branches to anticipate upcoming execution
path and inserts corresponding instruction addresses into the
FTQ. Consequently, the FTQ contains a stream of anticipated
instruction addresses to be fetched by the core. The prefetch
engine scans the FTQ to identify prefetch candidates and issue
prefetch requests.

For FDIP to be effective, the BTB needs to accommodate
the branch working set, otherwise frequent BTB misses will
cause FDIP to prefetch the wrong path as FTQ will be filled
with wrong path instruction addresses. This is one of the key
reasons why commercial processors deploy massive BTBs, as
also observed by [5].

3 BTB-X

To reduce the overall storage cost, this work seeks to minimize
the storage requirements of the costliest fields making up each
BTB entry, i.e. target and tag, through two ideas: partitioning
and hashing.

3.1 Partitioned BTB

As Figure 1 shows, the largest contributor to storage cost is
the target field, which stores the branch target address. For
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Fig. 3: Distribution of branch target offsets.

instance, in the ARM v8 ISA, which uses a 32-bit fixed length
instruction encoding, the target address is 46 bits long with a
48-bit virtual address space. Our key insight is that targets of
most branches lie relatively close in the virtual address space to
the branch itself. As a result, encoding the distance to the target,
in the form of an offset from the branch instruction, instead of
a full target address, can provides drastic storage savings.
Figure 3 plots the distribution of offsets in the branch
working sets of our workload traces. Offsets are calculated
in instruction words, which are 32 bits in the ARM v8 ISA.
The data includes both conditional and unconditional branches;
hence, it comprehensively covers the full branch working set.
The X-axis shows the number of bits required to encode the
offset, while the Y-axis plots the frequency of occurrence. Note
that, in addition to bits for encoding the offset, an additional bit
is required for the direction of the offset (forward /backward).
As the figure shows, short offsets dominate the distribution
with 37% of branches requiring only seven bits or fewer for
their offsets. A further 30% of branches only require between
8 and 14-bits to represent their offsets. The reason why such
a high fraction of offsets is short is that conditional branches
dominate the dynamic branch working set, and they tend to
have short offsets [6]. This is because conditional branches
generally guide the control flow only inside a function; mean-
while, software engineering principles favor small functions,
thus restricting conditional branch offsets to short distances.
Perhaps surprisingly, Figure 3 also shows that very few
branches require a large number of bits to encode their offset.
Indeed, a meagre 1% of branches requires 25 bits or more
for their offset encoding. The sum of these results indicates
that reserving space for the full 46-bit target address results
in an appalling under-utilization of BTB storage, since 99%
of branches need at most half the number of bits needed to
represent the full target address if offsets are used instead.
Based on these insights, we propose to partition a single
logical BTB into multiple physically-separate BTBs. The BTBs
differ amongst themselves only in the size of the offset. When
the branch prediction unit queries an address, all BTB partitions
are accessed in parallel, hence presenting a logical equivalent of
a monolithic BTB. If the core queries the BTB with n addresses
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Fig. 4: BTB entry composition for BTB-X partitions.

per cycles, each BTB-X partition must be accessed with all n
addresses.

Figure 4 shows the BTB partitions used by our proposed
BTB organization, called BTB-X. It uses five different BTBs with
offset field sizes of 0, 7, 14, 24 and 46 bits. The BTB with no
offset field (i.e., 0-bit offset) tracks only return instructions.
Recall from Section 2 that return instructions read their target
address from RAS; as such, there is no need to allocate space for
targets of returns in the BTB. Further, as all instructions in this
BTB are returns, it does not require the branch type field either.
Other branches are allocated entries in one of the remaining
four BTBs based on the minimum number of bits required to
encode their offsets. For example, if a branch requires 10 bits
for encoding its target offset, it is allocated an entry in the BTB
with target offset field size of 14 bits.

We further make use of the data in Figure 3 to size each
of the BTBs. Because very few branches require more than
24 bits to encode their target offsets, the BTB with the 46-bit
offset field is allocated the fewest entries. Meanwhile, the BTBs
corresponding to 7-, 14-, and 24-bit offset are allocated a similar
number of entries, as the frequency of 1-7 bit, 8-14 bit, and 15-24
bit offsets is about same — 37%, 30% and 32% respectively.

3.2 Tag Compression

Tags comprise the second largest source of storage overhead in
each BTB entry, requiring 39 bits in the baseline design. To fur-
ther reduce the storage requirement, BTB-X uses a compressed
16-bit tag in all of its BTBs. Our compression scheme maintains
the 8 low-order bits same as in the full tag. The remaining bits
of the full tag are folded, using the XOR operator, in blocks
of eight to compute the 8 higher-order bits for the compressed
tag. As our evaluation shows, the performance impact of this
scheme is negligible as the hashing function (folded XOR)
preserves most of the entropy found in the high-order bits.

3.3 Applicability to Basic-Block-Based BTBs

While this work describes BTB-X in the context of an
instruction-based BTB organization (i.e., the BTB is accessed
using individual instruction addresses), our insights and design
are equally applicable to basic-block-based BTBs (BB-BTBs) [6],
[7], [9]. BB-BTBs are similar to instruction-based ones but are
accessed using a basic-block address. Because existing BB-BTB
designs store full branch targets and offsets, they would benefit
from optimizations described in this work.

4 [EVALUATION

We use ChampSim [1], an open-source trace-driven simulator,
to evaluate the efficacy of BTB-X on server and client workload
traces from IPC-1 [2]. We warm up microarchitectural structures
for 50M instructions and collect statistics over the next 50M.
The microarchitectural parameters for the modeled processor
are listed in Table 1.

TABLE 1: Microarchitectural parameters

6-wide O00, 128-entry FTQ, 128 reservation stations,
352-entry ROB, 128-entry load queue, 72-entry store queue
Hashed Perceptron
L1-1 32 KB, 8-way, 4 cycle latency, 8 MSHRs
L1-D 48 KB, 12-way, 5 cycle latency, 16 MSHRs
L2 512 KB, 8-way, 14/15 cycle latency, 32 MSHRs
LLC 2MB, 16-way, 34/35 cycle latency, 64 MSHRs

Core

Branch Predictor

TABLE 2: Storage breakdown for conventional BTB

Entries Organization  Entry size (bits) Total (bytes)
1K 128-set, 8-way 87 10.875K
2K 256-set, 8-way 86 21.5K
4K 512-set, 8-way 85 42.5K
8K 1024-set, 8-way 84 84K
16K 2048-set, 8-way 83 166K

TABLE 3: Storage breakdown for BTB-X. The storage budget is
comparable to that of a 1K-entry conventional BTB.

Partition Entry size Entries  Storage
0-bit offset 16-bits 768 1.5KB
7-bit offset 25-bits 768 2.34KB
14-bit offset 32-bits 640 2.5KB
24-bit offset 42-bits 640 3.28KB
46-bit offset 64-bits 80 0.625KB
Total 2,896  10.25KB

TABLE 4: Storage and entries in conventional BTB and BTB-X

Conventional BTB BTB-X
Storage  Entries Storage  Entries
10.875KB 1K 10.25KB 2,896
21.5KB 2K 20.5KB 5,792
42.5KB 4K 41KB 11,584
84KB 8K 82KB 23,168
166KB 16K 164KB 46,336

4.1 Storage Breakdown

The storage requirements for a conventional BTB for different
number of BTB entries are presented in Table 2 assuming a
48-bit virtual address space. We increase the number of sets
in the BTB to increase the number of entries while keeping the
associativity same (8-way). Notice that the entry size reduces by
one bit while doubling the number of entries. This is because
the tag size reduces as more bits are needed to index the BTB.
Table 3 presents the allocation of the storage budget among
the five BTB-X partitions. For this analysis, the storage budget
is capped at that of a 1K-entry conventional BTB. As the table
shows, the partition for 46-bit offsets gets the smallest amount
of storage as very few branches need to be allocated there.
Meanwhile, the remaining partitions get relatively more storage
with a roughly similar number of entries in each partition.
When presented with a larger storage budget, we follow
the same strategy for scaling up BTB-X as for a conventional
BTB. Thus, we double the number of sets in each BTB partition
to double the capacity while maintaining the associativity (i.e.,
0-bit and 7-bit offset partitions are 6-way, others are 5-way).
Table 4 shows the number of entries that a conventional BTB
and BTB-X can accommodate for several storage budgets. As is
evident from the table, for a given storage budget, BTB-X can
store about 2.8x more entries than the conventional BTB. Note
that since the number of sets have to be a power of 2, we are
not able to precisely match the storage of conventional BTB and
BTB-X — the conventional BTB gets a slightly higher storage.

4.2 Performance

To assess the effectiveness of BTB-X, we compare its perfor-
mance to that of a conventional BTB across different storage
budgets. Recall from Section 2 that a larger BTB can deliver
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Fig. 5: Performance gain for conventional BTB and BTB-X (both
with FDIP) on (a) server and (b) client traces. Baseline is no-
prefetch 1K-entry conventional BTB. X-axis is storage for a 1K-,
2K-, 4K-, 8K-, and 16K-entry conventional BTB.

two distinct benefits: 1) reduce the incidence of pipeline flushes
by detecting branches in the upcoming control flow and 2) facil-
itate instruction prefetching when coupled with FDIP. Thus, we
compare the performance gains achieved by the two competing
BTB designs by evaluating them with FDIP.

Figure 5 presents the performance gains obtained on server
and client traces. Each bar in the figure shows the contribution
to performance of having fewer pipeline flushes and from better
instruction prefetching stemming from larger BTB capacities.
The results are normalized to the performance of a core with a
1K-entry conventional BTB (10.875KB storage budget) and no
instruction prefetching.

As the figure shows, BTB-X provides significantly higher
overall performance than the conventional BTB for equal stor-
age budgets of up to several tens of kilobytes. The performance
advantage of BTB-X is particularly pronounced on server traces
whose large instruction footprints pressure the BTB and L1-I.
For instance, BTB-X provides 63% performance gain over the
baseline compared to 38% of conventional BTB with 21.5KB
storage budget. At large BTB storage budgets, the branch
working sets of many workloads start to fit in the available
BTB capacity, at which point the performance gap between the
two designs diminishes.

A key take-away from the figure is that BTB-X provides
same or higher performance than the conventional BTB even
when BTB-X is given just half the storage budget of its con-
ventional counterpart. For example, in Figure 5a, the con-

ventional BTB improves performance by 38% with a 21.5KB
budget whereas BTB-X provides a 44% improvement with just
10.875KB of storage. The reason for this phenomenon is that
BTB-X accommodates 2.8x more entries than a conventional
BTB of equal storage budget; thus, halving BTB-X’s budget still
gives a capacity advantage over the conventional design.

Ignoring instruction prefetching and looking exclusively at
performance gains stemming from reduced pipeline flushes, the
trends are similar to above. For storage budgets of up to several
tens of KBs, BTB-X outperforms a conventional BTB even with
half of the latter’s storage budget. For instance, Figure 5a (blue
segments of the bars) shows that BTB-X provides 13% gain with
a 10.875KB budget whereas a conventional BTB with twice the
budget (21.5KB) gains only 10%.

4.3

For assessing the performance loss due to compressed tags,
we compare the performance of BTB-X with 16-bit tags versus
full tags for the smallest BTB size (10.875 KB). We focus on
the smallest BTB as it is likely to suffer the highest degree of
aliasing due to tag compression. Our results show that, full
tags provide 38.21% performance gain, geo-mean across server
and client traces, over the baseline compared to 38.16% with
compressed tags, a difference of only 0.05%. This indicates that
our tag compression scheme is able to preserve the entropy of
higher-order bits.

Impact of Tag Compression

5 CONCLUSION

The multi-megabyte instruction footprints of contemporary
server applications cause frequent BTB and L1-I misses, which
have become major performance limiters. Because BTB capacity
greatly affects front-end performance in terms of flush rate and
the efficacy of fetch-directed instruction prefetching, commer-
cial products allocate tens to hundreds of KBs of storage to
BTBs. To reduce the BTB storage requirements, this paper intro-
duced an optimized BTB organization. The proposed design,
BTB-X, leverages our insight that branch target offsets vary but
tend to be much shorter than full target addresses. BTB-X uses
an ensemble of five BTBs, each storing offsets of a different
length, and also compresses the tags to track 2.8x more branches
than a conventional BTB with an equal storage budget.
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