
A Specialized BTB Organization for Servers
Truls Asheim
NTNU, Norway

Boris Grot
University of Edinburgh, UK

Rakesh Kumar
NTNU, Norway

1 INTRODUCTION AND MOTIVATION
Contemporary server applications feature massive instruction foot-
prints stemming from deeply layered software stacks. These foot-
prints far exceed the capacity of the branch target buffer (BTB) and
instruction cache (L1-I), resulting in the so-called front-end bottle-
neck. BTB misses may lead to wrong-path execution, triggering
a pipeline flush when misspeculation is detected. Such pipeline
flushes not only throw away tens of cycles of work but also expose
the fill latency of the pipeline. Similarly, L1-I misses cause the core
front-end to stall for tens of cycles while the miss is being served
from lower-level caches.

BTB stands at the center of a high-performance core front end
for three key reasons: it determines the instruction stream being
fetched, it identifies branches for the branch predictor, and it affects
the L1-I hit rate. Specifically, by identifying control flow diver-
gences, the BTB ensures that the branch predictor can make predic-
tions for upcoming conditional branches. For predicted-taken and
unconditional branches, the BTB supplies targets to which instruc-
tion fetch should be redirected. Finally, the BTB together with the di-
rection predictor enables an important class of instruction prefetch-
ers called fetch-directed instruction prefetchers (FDIP) [7, 8, 10],
which rely on the BTB to discover L1-I prefetch candidates.

Considering the criticality of capturing the large branch working
sets of modern workloads, commercial CPUs feature BTBs with
colossal capacities. Thus, IBM z-series processors [4], AMD Zen-
2 [12], and ARM Neoverse N1 [9] feature 24K-entry, 8.5K-entry, and
6K-entry BTBs. With each BTB entry requiring 8 bytes or more,
BTB storage costs can easily reach into tens and even hundreds of
KBs. Indeed, the Samsung Exynos M6 mobile processor allocates a
staggering 529KB of on-chip storage to BTBs [5]. Not only the BTB
storage cost is high, it is increasing at a rapid pace. For example,
the Samsung Exynos BTB storage budget increased nearly six fold
(98.9KB to 561.5KB) from M2 to M6, over a period of about eight
years [5].While suchmassive BTBs are effective at capturing branch
working sets, they do so at staggering area costs.

As the instruction footprints of server applications continue
to expand, a trend also reflected in Google Web Search workload
whose instruction footprint is growing at annualized rate of 27% [6],
the BTB sizes and their storage overheads are destined to increase
in future. Therefore, there is an urgent need to investigate storage-
effective BTB organizations to combat the front-end bottleneck
without necessitating prohibitive area budgets.

2 KEY INSIGHTS
We analyze conventional and state-of-the-art BTB organizations
and observe that the branch targets are the single largest contributor
to BTB storage cost. Further, we analyze the number of bits required
for branch target offsets to assess if storing the offsets, instead of the
full or compressed targets, can reduce BTB storage requirements.

Figure 1 plots the distribution of branch target offsets in the
branch working sets of our workloads. The data includes both

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46

Fr
ac

ti
o

n
 o

f 
d

yn
am

ic
 b

ra
n

ch
e

s 
co

ve
re

d

Number of bits required for branch target offsets

Figure 1: Distribution of branch target offsets.

conditional and unconditional branches; hence, it comprehensively
covers the full branch working set. The X-axis shows the number
of bits required to store offsets, while the Y-axis plots the fraction
of dynamic branches covered.

As the figure shows, short offsets dominate the distribution with
54% of branches requiring only six bits or fewer for their offsets.
A further 22% of branches only require between 7 and 10-bits to
represent their offsets. The reason why such a high fraction of
offsets is short is that conditional branches dominate the dynamic
branch working set, and they tend to have short offsets [7]. This is
because conditional branches generally guide the control flow only
inside a function; meanwhile, software engineering principles favor
small functions, thus restricting conditional branch target offsets
to short distances. Furthermore, return instructions get their target
from the return address stack (RAS), thus they do not need to store
any target bits in BTBs. Therefore, for the purpose of this analysis,
we assume 0-bit offsets for return instructions.

Perhaps surprisingly, Figure 1 also shows that very few branches
require a large number of bits for their offset. Indeed, a meagre 1%
of branches requires more than 25 bits for their offsets. The sum of
these results indicates that reserving space for the full 46-bit target
address results in an appalling under-utilization of BTB storage,
since 99% of branches need at most half the number of bits needed
to represent the full target address if offsets are used instead.

We gain two key insights from this analysis:
Key Insight 1: The targets of most branches lie relatively close in
the virtual address space to the branch itself. As a result, storing
the distance to the target, in the form of an offset from the branch
instruction can provide drastic storage savings.
Key Insight 2: The target offset sizes are unevenly distributed
with 0-6 bits, 7-10 bits, and 11-25 bits required to encode the offsets
of 54%, 22% and 23% of branches respectively. Therefore, a single
size offset field cannot provide storage optimal solution.

3 BTB-X
Based on these insights, we propose a new BTB design, called BTB-
X, that stores target offsets instead of full or compressed target
addresses. To accommodate the uneven distribution of target offsets,
we size different ways of a set associative BTB-X to hold different



PACT ’22, October 8–12, 2022, Chicago, IL, USA Truls Asheim, Boris Grot, and Rakesh Kumar

sized target offsets. A branch is allocated to a way whose offset
field is at least as large as the number of bit required to store the
target offset. We use an 8-way set associative BTB-X and leverage
the data in Figure 1 to appropriately size the offset field of each
way such that each way covers about 12.5% dynamically executed
branches. Figure 1 shows that, on average, 0-, 4-, 5-, 7-, 9-, 11-,
19-, and 25-bit offsets cover about 20%, 36%, 46%, 61%, 72%, 79%,
90%, and 99% dynamic branches. Therefore, we size the 8-ways
of BTB-X ways to hold 0-, 4-, 5-, 7-, 9-, 11-, 19-, and 25-bit target
offsets respectively. Notice that about 20% of dynamic branches
that require 0-bits for their offset are return instructions that read
their target from RAS. Therefore, way-0 of BTB-X does not feature
any storage for target offsets. Though return instruction do not get
their target from BTB, they still need to be allocated BTB entries
so that the branch prediction unit can identify them and pick their
target from RAS while generating instruction stream to be fetched.

BTB-X covers 99% of the dynamically executed branches and we
employ a very small conventional direct-mapped BTB, called BTB-
XC, that stores full target addresses for the remaining 1% branches.
Reserving a way in BTB-X for such branches would unnecessarily
increase the storage requirements as these branches require much
fewer entries than the number of sets in BTB-X. Indeed, based on
our analysis, we size BTB-XC to store 64x fewer entries than BTB-X,
i,e, 8x fewer entries than the number of sets in BTB-X.

4 EVALUATION
We use ChampSim [2], an open-source trace-driven simulator, to
evaluate the efficacy of BTB-X on server workload traces provided
for the first Instruction Prefetching Championship (IPC-1) [1]. The
modeled processor resembles Intel Sunny Cove [3]. We compare
the storage requirements and performance of BTB-X against a con-
ventional BTB design (Conv-BTB) that stores full target addresses,
and also against the state-of-the-art BTB design, called PDede [11],
which stores compressed targets.
Storage comparison: Table 1 presents the number of branches the
different BTB organizations (BTB-X, PDede, and Conv-BTB) can
track at different storage budgets. The storage budgets shown are
BTB-X storage required for storing 256, 512, 1K, 2K, 4K, 8K, and 16K
branches. Our calculations assume a 48-bit virtual address space. As
the table shows BTB-X stores significantly more branches than any
other BTB organizations. Concretely, it stores 2.24x more branches
than a conventional BTB organization. Compared to PDede, BTB-X
stores 1.24x more branches at 0.9KB storage budget and 1.34x more
branches at 58KB storage budget. BTB-X’s advantage over PDede
increases with storage budget because PDede entry size increases
with the number of branches PDede can accommodate.
Performance comparison: Figure 2 presents the performance
gains obtained by different BTB designs on a set of server workloads.
The results are normalized to the performance of Conv-BTB with
0.9KB storage budget. Instruction prefetching (FDIP) is enabled in all
designs including the baseline. As the figure shows BTB-X provides
significantly higher performance than the Conv-BTB and PDede for
equal storage budgets of up to 29KB and 14.5KB respectively. For
instance, BTB-X provides 45% performance gain over the baseline
compared to 38% and 27% of PDede and Conv-BTB, respectively, at
14.5KB budget. At large BTB storage budgets, the branch working

Table 1: Number of branches in different BTB designs.

Storage BTB-X (+ BTB-XC) PDede Conv-BTB
0.9KB 256 (+ 4) 210 116
1.8KB 512 (+ 8) 415 232
3.6KB 1K (+ 16) 820 464
7.25KB 2K (+ 32) 1617 928
14.5KB 4K (+ 64) 3190 1856
29KB 8K (+ 128) 6292 3712
58KB 16K (+ 256) 12405 7424

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

0.9KB 1.8KB 3.6KB 7.25KB 14.5KB 29KB 58KB

P
er

fo
rm

an
ce

 g
ai

n

Conv-BTB Pdede BTB-X

Figure 2: Performance comparison of different BTB designs.

sets of many workloads start to fit in the available BTB capacity,
at which point the performance gap between BTB-X and the other
two designs diminishes. A key take-away from this figure is that
BTB-X outperforms the conventional BTB even when it is given
just half the storage budget of its conventional counterpart. For
example, in Figure 2, the Conv-BTB improves performance by 27%
with a 14.5KB budget whereas BTB-X provides a 31% improvement
with just 7.25KB of storage. The reason for this behaviour is that
BTB-X accommodates 2.24x more entries than Conv-BTB of equal
storage budget; thus, halving BTB-X’s budget still gives a slight
capacity advantage over Conv-BTB.

5 CONCLUSION
As BTB capacity greatly affects front-end performance, commercial
products allocate tens to hundreds of KBs of storage to BTBs. We
propose a storage-effective BTB organization, called BTB-X, that
stores target offsets in place of full target addresses and employs
differently sized BTB-ways for storing offsets of different lengths,
thus drastically reducing BTB storage requirements.

REFERENCES
[1] .. 1st Instruction Prefetching Championship. https://research.ece.ncsu.edu/ipc/.
[2] .. ChampSim Simulator. https://github.com/ChampSim/ChampSim.
[3] .. Ice Lake processors. https://www.anandtech.com/show/14514/examining-

intels-ice-lake-microarchitecture-and-sunny-cove/3.
[4] James Bonanno et al. 2013. Two level bulk preload branch prediction. InHPCA’13.
[5] B. Grayson et al. 2020. Evolution of the Samsung Exynos CPU Microarchitecture.

In ISCA’20.
[6] Svilen Kanev et al. 2015. Profiling a Warehouse-Scale Computer. In ISCA’15.
[7] Rakesh Kumar et al. 2017. Boomerang: A Metadata-Free Architecture for Control

Flow Delivery. In HPCA’17.
[8] Rakesh Kumar et al. 2018. Blasting through the Front-End Bottleneck with

Shotgun. In ASPLOS’18.
[9] Andrea Pellegrini et al. 2020. The Arm Neoverse N1 Platform: Building Blocks

for the Next-Gen Cloud-to-Edge Infrastructure SoC. IEEE Micro 40, 2 (2020).
[10] G. Reinman et al. 1999. Fetch directed instruction prefetching. In MICRO’99.
[11] Niranjan K Soundararajan et al. 2021. PDede: Partitioned, Deduplicated, Delta

Branch Target Buffer. In MICRO’21.
[12] David Suggs et al. 2020. The AMD “Zen 2” Processor. IEEE Micro 40, 2 (2020).

https://research.ece.ncsu.edu/ipc/
https://github.com/ChampSim/ChampSim
https://www.anandtech.com/show/14514/examining-intels-ice-lake-microarchitecture-and-sunny-cove/3
https://www.anandtech.com/show/14514/examining-intels-ice-lake-microarchitecture-and-sunny-cove/3

	1 Introduction and Motivation
	2 Key Insights
	3 BTB-X
	4 Evaluation
	5 Conclusion
	References

