
FIFOrder MicroArchitecture: Ready-Aware
Instruction Scheduling for OoO Processors

Mehdi Alipour1, Rakesh Kumar2, Stefanos Kaxiras1, and David Black-Schaffer1

1Department of Information Technology, Uppsala University, Sweden
1first.last@it.uu.se

2Department of Computer Science, Norwegian University of Science and Technology, Norway
2first.last@ntnu.no

Abstract—The number of instructions a processor’s instruction
queue can examine (depth) and the number it can issue together
(width) determine its ability to take advantage of the ILP in an
application. Unfortunately, increasing either the width or depth of
the instruction queue is very costly due to the content-addressable
logic needed to wakeup and select instructions out-of-order.

This work makes the observation that a large number of
instructions have both operands ready at dispatch, and therefore
do not benefit from out-of-order scheduling. We leverage this to
place such ready-at-dispatch instructions in separate, simpler, in-
order FIFO queues for scheduling. With such additional queues,
we can reduce the size and width of the expensive out-of-order
instruction queue, without reducing the processor’s overall issue
width and depth.

Our design, FIFOrder, is able to steer more than 60% of
instructions to the cheaper FIFO queues, providing a 50% energy
savings over a traditional out-of-order instruction queue design,
while delivering 8% higher performance.

I. INTRODUCTION

Out-of-order (OoO) processors identify, select, and execute
ready instructions out of program order to exploit instruction
level parallelism (ILP). To do so, they employ a number
of large, complex, and power-hungry hardware structures
such as the instruction queue (IQ), physical register files
(PRF), and load/store queues (LSQ). The IQ is responsible
for identifying and selecting ready instructions for execution,
and is arguably the most complex and power-intensive [1],
[2] structure. Its complexity stems mainly from two sources:
First, as instructions complete their execution, the IQ needs to
broadcast their results (destination register or instruction id) to
all other waiting instructions. When all the operands for such
a waiting instruction become available, it is marked as ready
for execution. Second, the IQ needs to select instructions for
execution from the pool of ready instructions, based on a set
of priorities and available functional units.

To support these functionalities, the IQ is implemented as
a content addressable memory (CAM). CAMs are particularly
expensive to scale up because they require logic for each entry
and each port port that detects if the port’s data matches that
particular entry. For broadcast, the IQ must have a broadcast
port for each instruction that can finish in any cycle to mark
all relevant instructions as ready. For instruction selection, the
CAM must include logic that examines all ready instructions
and chooses them by priority, as well as multiple output ports

GemsFDTD

bzip2
gcc mcf

milc
gromacs

cactusADM

namd
gobmk

dealII
soplex

povray
calculix

hmmer
sjeng

libquantum

h264ref

lbm omnetpp

wrf xalancbmk

average

0

10

20

30

40

50

60

70

80

90

100

D
is

tr
ib

u
ti

o
n

 o
f

re
a

d
y

o

p
e

ra
n

d
s

a
t

d
is

p
a

tc
h

2 ready: R@D 1 ready: AR@D 1 ready : LD_Tail 0 ready: NR@D

Fig. 1. Classification of instructions at dispatch: both operands ready (ready-
at-dispatch, R@D), one operand ready (almost-ready-at-dispatch, AR@D),
one operand ready and one from a load (load-tail, LDTail), no operands ready
(not-ready-at-dispatch, NR@D). On average 20% of instructions are R@D,
and therefore do not benefit from out-of-order scheduling.

for reading out the selected instructions. The combination of
the per-entry and per-port logic required for broadcase and
selection, along with the selects and wires needed to output
the multiple instructions selected for issue, make the IQ an
incredibly complex and energy-hungry circuit that based on
figure 2, in average, contributes into 45% of the run-time
dynamic energy of the core .

Though OoO scheduling enables early execution of ready
instructions by bypassing the stalled ones, its complexity
leads to significant energy costs. Moreover, the complexity
increases superlinearly with the IQ size and issue width,
making it challenging to scale up the IQ. Indeed, the delays
associated with such complexity force instruction scheduling
to be implemented over multiple stages in modern processors.

In this work, we make the critical observation that not
all instructions benefit from the OoO instruction scheduling.
In particular, instructions whose operands are both ready-at-
dispatch (R@D) can be issued at any time an appropriate
functional unit is available. If such instructions can be moved
out of the IQ and scheduled using simpler hardware, such
as first-in first-out (FIFO) queues, the freed IQ space can be
utilized by other instructions that may require OoO scheduling.
As instructions can be issued for execution from these simpler
FIFO queues in addition to the IQ, the effective issue window
size increases, leading to better performance. As the FIFO
queues are much simpler and more energy-efficient than the
out-of-order IQ, they can deliver additional performance with
a very small additional energy cost compared to scaling the
IQ [1]. Conversely, for the same performance, the size of the
IQ can be reduced due to the instructions placed in the FIFO
queue, thereby saving energy.

bzip2
cactusADM

calculix
dealII

gcc GemsFDTD

gobmk
gromacs

hmmer
h264ref

lbm libquantum

mcf
milc

namd
omnetpp

povray
sjeng

soplex
wrf xalancbmk

avg
0

10

20

30

40

50

60

70

80

90

100

C
o

re
 D

y
n

a
m

ic
 E

n
e

rg
y

 (
%

)

Dynamic Instruction window Rest of the Core

Fig. 2. Energy (static+dynamic) distribution among the dynamic instruction
window (i.e. instruction scheduling) and the rest of the core. The dynamic
instruction window includes IQ and its associated circuitry for operations like
instructions scheduling, wake-up, select, etc. Based on this figure, in a single
core processor, more than 40% of the energy is consumed by the dynamic
instruction window in average across SPEC2006 benchmarks.

To understand which instructions do not benefit (or only
benefit minimally) from out-of-order scheduling, we classify
instructions into four categories based on their operand avail-
ability when they are dispatched to the IQ and the producer
instruction type for non-ready operands. The first category
of instructions are those that have all their operands Ready
at Dispatch (R@D). These instructions do not need to wait
in the IQ to become ready (as they already are) and can be
directly sent for execution if functional units are available. In
this work we steer R@D instructions to simpler, FIFO-based
instruction queues. Figure 1 shows that 20% of all dynamic
instructions are R@D in SPECcpu2006, for a typical 4-wide
OoO processor with 128 ROB entries.

The second category of instructions are those that have
only one non-ready operand at dispatch, and this operand is
produced by a R@D instruction. As the producers of these
instructions are likely to complete their execution soon (their
operands are already ready), these instruction are likely to
be ready shortly as well, and we call them Almost Ready
at Dispatch (AR@D). Also, we discover that if the only non-
ready operand of an instruction is generated by another AR@D
instruction, it does not result in frequent stalls. Therefore, we
include these instructions also in the AR@D category. Figure 1
shows that 22% of the dynamic instructions are AR@D.

The third category includes a dependent instructions with
the first instruction receiving at least one of its operands from
a load instruction, or Load Tails (LDTail). We observe that
such chains might reside in the IQ for long intervals, especially
if the load misses in the caches. These chains occupy space
in the IQ that could be used for other instructions that can
potentially be ready sooner. We propose to steer these chains
to a simple FIFO to reduce IQ pressure. Once the load receives
its data, these dependent instructions can be executed quickly
from the FIFO. Our analysis shows about 25% of the dynamic
instructions are LDTail.

The final category of instructions are Not Ready at Dispatch
(NR@D). In this category non of the operands are ready
which includes instructions whose operands come from a load
dependant instruction, or whose operands come from other
NR@D instructions. The waiting time for these instructions in
the IQ is unpredictable, and they may become ready out-of-
order. Therefore, they do benefit from OoO scheduling, and
steering them to a FIFO would increase stalls. The remaining
33% of dynamic instructions are NR@D.

Based on these observations, we propose a new core design
that employs cheap, in-order FIFO queues for instructions
that do not need out-of-order scheduling (R@D, AR@D, and
LDTail), thus freeing up expensive, out-of-order IQ entries
for instructions that benefits the most from them (NR@D).
Offloading instructions from the IQ to FIFO queues frees
space in the IQ for instructions that would otherwise not
have been able to be dispatched. This increases the effective
issue window (IQ size plus FIFO queue size) and increases
performance. As more than 60% of instructions are placed in
and issued from the FIFO queues, our design allows us to
reduce the issue width of the IQ from 4 to 1. This trade-off,
of more, cheaper FIFO queues for a narrower expensive IQ,
allows us to reduce energy while improving performance. Our
primary contributions include:

• Identifying a easy-to-detect classes of instructions that
do not benefit from OoO scheduling (R@D: operands are
ready at the dispatch stage), or benefit minimally (AR@D:
operands are almost ready).

• Demonstrating that more than 60% of instructions fall
into these classes, and can be effectively offloaded from
the expensive IQ to simple FIFO queues, thereby improv-
ing energy efficiency.

• Proposing and evaluating a core design that steers these
instruction classes to simple FIFO queues and the remain-
ing instructions to a 1-wide out-of-order IQ to provide
a 50% energy savings while also delivering 8% perfor-
mance gain.

II. BACKGROUND AND MOTIVATION

A. The cost of OoO scheduling

OoO cores aim to execute instructions as soon as their
source operands become ready, even though older instructions
may be stalled [1], [3]. Bypassing stalled instructions to enable
early execution of ready instructions improves performance.
However, the ability to identify instructions as soon as they
become ready and select among all ready instructions results
in an immensely complex and energy-intensive IQ implemen-
tation. We describe the two main steps in OoO instruction
scheduling below:
Wake-up: Instructions wait in the IQ until their operands
become ready and they are selected for execution. The IQ then
wakes-up the waiting instructions (marks them as ready for
execution) as their producers finish execution and generate the
required operands. As a waiting instruction can be anywhere in
the IQ, the results1 of executed instructions must be broadcast
to all entries in the IQ. Furthermore, as multiple instructions
can be executed every cycle, multiple results need to be broad-
cast simultaneously. For every completed operand broadcast,
every instruction in the IQ needs to compare its input operands
to see if there is a match, indicating that the operand is ready.
This requires multiple comparators per IQ entry and broadcast
busses as many operands as can be generated in a cycle. In
the case of a match, the operand is marked as available. The
instruction itself becomes ready when all operands are ready.

1Depending on the implementation, the broadcast information can be the
result, destination register number, instruction id, or a combination of these.

PR1 PR2

Load

LDTail

I0

I5 I7

PR5

I2

I6

I3

PR3

I1

I8

PR1
PR2
PR3
PR5

Rename Table Map

Not ready (in IQ)

R@D

AR@D

Ready

Ready

Ready

Pending

OoO

Fig. 3. Instruction dependency graph showing R@D (green), AR@D (blue),
and LDTail (red) instructions. The register rename table is shown, indicating
that physical registers 1-3 have been written (inputs to the R@D and AR@D
instructions) while physical register 5 (PR5) has not. (I7) has PR5 and (I6)
as input operands. Apart from PR5, I6 is pending as well which is why (I7)
is not included in the LDTail. I6 is a load dependant instruction but it is not
a LDTail since it has two pending operands.

Selection: Instruction issue logic selects instructions for ex-
ecution from the ready instructions in the IQ by priority. As
ready instructions can be anywhere in the IQ, all IQ entries
need to be examined in parallel to be able to select among
them. Ready instructions are typically prioritized based on
their type (memory accesses first to increase MLP) or age
(oldest first to avoid chains of stalled instructions). Computing
these priorities requires complex comparison trees of instruc-
tion opcodes and tags. In addition to the priority logic, the IQ
requires as many output ports as the maximum issue width
to enable the selected instructions to be read out. As a result
of this complexity, the size and energy of the IQ increases
super-linearly with the number of entries and issue width [1].

B. Do all instructions need OoO scheduling?

We observe that not all instructions need an out-of-order
wakeup and select for early execution. For example, if an
instruction is R@D, it does not need the result broadcast
mechanism of the IQ wakeup to detect operand availability
(as they are already available). Such R@D instructions can
be dispatched to a simpler, and hence, cheaper, FIFO queue
to enable them to bypass the stalled instructions in the IQ.
As only R@D instructions placed in the FIFO queue, there
will not be any stalls in this queue. Offloading such R@D
instructions from the IQ to a simple FIFO queue provides a
significant energy saving opportunity as the issue width of
the IQ can be reduced because FIFO queue will also supply
instructions for execution.
Ready-at-Dispatch (R@D, 20%): These instructions have all
of their source operands ready when they are dispatched to the
IQ. Compiler optimizations that move producer instructions
as early as possible, such as load-hoisting or decoupled
access-execute [4], are particularly likely to result in R@D
instructions at runtime. In figure 3, instruction I1 is a R@D
instruction since both of its operands are ready when is it is
dispatched.
Almost-Ready-at-Dispatch (AR@D, 22%): These instruc-
tions have one of their operands ready while the non-ready
operand comes from either a R@D or AR@D instruction but
not from a load. As a result, these instructions are likely to be

TABLE I
MICROARCHITECTURAL PARAMETERS (BASED ON NEHALEM [5])

Freq, ISA 3.4 GHz, x86-64
L1i/d 32KiB, 8-way, 4clk
L2 256KiB, 8-way, 12clk
L3 1MiB, 8-way, 36clk
DRAM 200clk
Branch Predictor Two level, front end penalty 10clk
ROB/IQ/RF(Int,FP)/LQ/SQ 128/56/(68,68),48/36
FIFO queues 32 entries, issue up to 3 from head
Technology/VDD/temp 22nm itrs-hp/0.8/360K

TABLE II
FIFO AND IQ CONFIGURATIONS

Design # FIFOs IQ Issue Width RF ports
Baseline 0 4 8
Design #1 1 1 8
Design #2 2 1 8
Design #3 3 1 8
FXA [6] 1 2 10

ready soon, and are also good candidates for scheduling via
a FIFO queue. In figure 3, instruction I3 is AR@D. We do
not consider instruction I4 to be AR@D as it is likely to take
longer to be ready since neither of its operands are ready.
Load-tail (LDTail, 25%): Instructions with one ready operand
and the other one dependant on a load instructions are clas-
sified as load tails (LDTail). In figure 3 we see that the load
instruction, I0 has two dependent instructions whose sources
are either ready or come from R@D (I2) or AR@D (I6)
instructions. Only I2 is considered a LDTail instruction. I6
is not included as it is likely to take longer since its non-load
operand is not yet ready as well. I7 is not a LDTail because
it has a source coming from another register that has not yet
been written. Load and store instructions should always be
dispatched to the IQ to execute them as early as possible to
expose both MLP and ILP.

III. SIMULATION ENVIRONMENT

We use the Multi2sim simulator [7] (x86 target) with SPEC
CPU2006 [8], fast-forwarding 1B instruction, cache warming
for 250M, and then 1B instructions of detailed simulation. For
the energy model we use Cacti and McPAT[9], [10] .

IV. IMPLEMENTATION

To take advantage of the amenability of our identified
instruction classes to simpler scheduling, our approach relies
on steering appropriate classes to appropriate FIFOs or out-of-
order queues, and issuing them from there. This allows us to
improve efficiency by reducing the load on the IQ and reducing
its required width, as most instructions are steered to the FIFOs
and issued from them. To accomplish this, we need to be able
to cheaply classify instructions, steer them to the appropriate
queue, and identify when AR@D and LDTail instructions at
the head of a queue are ready for execution.

A. Classifying, steering, and waking instructions

The classification of R@D instructions simply requires
checking if both operands for an instruction are ready at

Single
FIFO

Double
FIFO

Triple
FIFO

0
10
20
30
40
50
60
70
80
90
100

S
ta
lle
d
 F
IF
O
(s
)

 o
v
e
r
ru
n
-t
im
e AR@D

LDTail

p
Fig. 4. The distribution of R@D FIFO stalls caused by AR@D and LDTail
instructions. Placing the instruction classes in separate queues provides
for more out-of-orderness between them, and allows different classes of
instructions to bypass each other when they are ready, thereby reducing stalls.

dispatch. We accomplish this by examining the existing Re-
name Map Table (RMT). Similarly, instructions with one
ready operand are either AR@D or LDTail. To detect LDTail
instructions, we need an additional bit in the RMT that
indicates whether an allocated register is coming from a
load instruction. We can then distinguish between AR@D
and LDTail at dispatch by checking that bit for the source
registers. The remaining instructions are NR@D. Instructions
are steered to the appropriate queue based on the FIFO design,
as discussed below.

R@D instructions at the head of a FIFO queue require no
check before issuing them to a functional unit for execution.
However, AR@D and LDTail instructions may not be ready
by the time they reach the head of a FIFO queue. Therefore,
we check the ready bit of the pending operation directly in the
Rename Map Table before issuing from the FIFO. The FIFOs
in our designs examine the three instructions closest to the
head of the FIFO and are able to issue up to 3 instructions
from the FIFO together. While the FIFOs can each issue up to
3 instructions per cycle, the total issue width of the processor
(FIFOs plus IQ) is kept to 4, as in the baseline design.

B. 1st Design: Single FIFO (reduce IQ pressure)

Our first design simply steers all R@D, AR@D, and LDTail
instructions to a single FIFO queue (issuing up to 3 instruc-
tions per cycle), with the remaining NR@D in the OoO IQ
(issuing up to 1 instruction per cycle.) The performance and
performance per energy results of this implementation are
shown in the leftmost bars of figure 6 and figure 7, normalized
to the baseline OoO processor (table I). As figure 6 shows,
a single 3-wide FIFO with a 1-wide OoO IQ deliers worse
performance than a baseline 4-wide OoO IQ.

The fundamental bottleneck of this design is that AR@D
and LDTail instructions are mixed with R@D instructions. This
causes the FIFO to frequently stall when non-ready AR@D or
LDTail instructions reach the head, which blocks other R@D
instructions in the FIFO from issuing. The breakdown of stall
sources for the single-FIFO design are shown in figure 4. We
can see that the FIFO queue was stalled and could not issue
instructions (issued zero or less than the bandwidth of three)
for 72% of the execution cycles, 40% due to AR@D and the
remaining 32% were due to LDTail. This suggests that keeping
the AR@D and LDTail instructions out of the FIFO that holds
R@D instructions would reduce R@D stalls.

Looking at performance per energy results in figure 7, the
single FIFO design outperforms the baseline OoO by 17% due
to the cheaper FIFO and 1-wide IQ replacing the much more
complex 4-wide IQ. The energy breakdown of the baseline
4-wide IQ vs. our 1-wide IQ and FIFOs is shown in figure 8.
We next seek to address the performance loss from a single
FIFO queue by adding additional FIFO queues to prevent
R@D instructions from being stalled by AR@D and LDTail
instructions. In essence, by adding more FIFO queues, we
hope to increase the out-of-orderness without the need for the
full CAM functionality (and cost) of an OoO IQ.

C. 2nd Design: Dual FIFOs (unblocking the R@D FIFO)

To tackle the problem of FIFO stalls, we add a second FIFO
for AR@D and LDTail instructions. This leaves the first FIFO
exclusively for R@D instructions, which will never stall. As
with the previous design, the maximum issue width is 1 for
the OoO IQ and 3 across both FIFOs. For selecting between
the FIFOs, a higher priority is given to instructions from the
R@D FIFO.

The performance and performance per energy results of
the dual FIFO design are shown in the second set of bars
in figure 6 and figure 7. By eliminating the stalls caused by
AR@D and LDTail instructions in R@D instruction execution,
the dual FIFO design outperforms the single FIFO design
overall, and is even better than baseline 4-wide OoO IQ design
in a few benchmarks. On average, the dual FIFO design
matches the baseline performance, but does so with more
energy-efficient scheduling due to its 1-wide OoO IQ and two
3-wide FIFOs. From energy point of view, dual FIFO design
outperforms the baseline in terms of performance per energy
by over 30% on average.

Despite the second FIFO queue, there are still many FIFO
stalls, as seen in the middle bar of figure 4. For this design,
the majority of the stalls, 35% of all cycles, are coming from
LDTail instructions that are blocking the second FIFO. To
tackle this problem we separate the LDTail instructions from
the AR@D ones by placing them in a third FIFO queue.

Rename Issue

ROB

LSQ

D-Cache

Write	Back Commit

O
ut
-O
f-O

rd
er 1

R@D

AR@D

LDTail

FIFO	#1
3

Dispatch Execute

Al
lo
ca
�o

n	
to
	F
IF
O
s,

RO
B,
	IQ

	a
nd

	L
SQ

RF

FIFO	#2

FIFO	#3

IQ

A
LU

A
G
U

B
R
U

FP
U

Re
na
m
e	
M
ap
	T
ab
le

Fig. 5. FIFOrder microarchitecture. Instructions are classified in the rename
stage based on the operand ready bits in Rename Map Table. In the dispatch
stage, they are steered to the IQ or FIFOs, depending on the instruction
classification. The issue stage stores the instructions in either the FIFOs or
IQ, and selects ready instructions across the queues for execution.

bzip2
cactusADM

calculix
dealII

gcc GemsFDTD

gobmk
gromacs

hmmer
h264ref

lbm libquantum

mcf milc namd
omnetpp

povray
sjeng

soplex
wrf xalancbmk

avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 I
P
C 1st design: Single FIFO 2nd design: Double FIFO 3rd design: Triple FIFO FXA

Fig. 6. IPC comparison between three designs of FIFOrder and a related work, FXA [6] normalized to baseline. Baseline: 4-wide OoO. Our designs: 1-wide
OoO plus 1, 2, or 3 FIFOs. FXA has a 2-wide OoO (see table I and table II).

bzip2
cactusADM

calculix
dealII

gcc GemsFDTD

gobmk
gromacs

hmmer
h264ref

lbm libquantum

mcf milc namd
omnetpp

povray
sjeng

soplex
wrf xalancbmk

avg
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

N
o
rm

a
liz

e
d
 I
P
C

 p
e
r

e
n
e
rg

y
 o

f
 d

y
n
a
m

ic
 i
n
st

ru
ct

io
n
 w

in
d
o
w 1st design: Single FIFO 2nd design: Double FIFO 3rd design: Triple FIFO FXA

Fig. 7. Normalized performance per energy of the dynamic instruction window. Both baseline and FXA [6] spend more energy on issuing instructions due
to their issue-widths of 4 and 2, respectively, compared to 1 in our designs.

D. 3rd Design: Triple FIFO (unblocking AR@D FIFO)

This design provides three separate FIFOs, one for each
of the instruction classes to prevent them from stalling each
other, along with a 1-wide OoO IQ. For instruction dispatch,
the highest priority is given to R@D instructions, then AR@D,
and lowest to LDTail. This order attempts to give priority to the
instructions that are most likely to be ready soonest. Figure 5
illustrates the final design and pipeline view of the FIFOrder
microarchitecture. The shaded and gray parts are the pipeline
parts that are affected by the FIFOrder. Functional unites are
shared between the IQ and the FIFOs to bring more flexibility
at issue time.

The performance and performance per energy result of the
three FIFO implementation are shown in the third set of bars
of figure 6 and figure 7. As a result of reducing FIFO stalls
(figure 4, right bar), this design outperforms the baseline out-
of-order by 8% on average and is 55% higher in energy
efficiency.

E. Energy Breakdown

For the baseline 4-wide OoO (table II) we consider the
size and width of the IQ, and use the number of writes and
reads to compute energy with [2]. Since our triple FIFO design
delivers the best performance per energy, we pick this design
to compare with the baseline in detail. Figure 8 shows the IQ
energy breakdown of this design compared to the 4-wide OoO
and the FXA [6] designs (both dynamic and static energy). The
total energy of the baseline is reduces by 50% in our design,
primarily due to an 80% reduction in IQ energy from the
smaller IQ width and a 73%-60% reduction in IQ reads/writes,
and due to the relatively small energy overheads of FIFO
queues.

V. RELATED WORK

A previously proposed technique, FXA [6], also aims to
reduce energy consumption of an OoO core by executing some
of the instructions in program order. FXA takes a brute force
approach of first trying to execute all instructions in program
order and then moving only those instructions that could not
be thus executed to an OoO queue. Our design splits the

instruction stream upfront for in-order and OoO execution.
FXA inserts a 4-stage in-order pipeline between the dispatch
and IQ of an OoO pipeline to filter out instructions that can
be executed early and in-order. This requires functional unit
replication in the front end. Our design, in contrast, shares
the same functional units among in-order and OoO execution.
To reduce the area overhead, FXA replicates only integer
functional units. As a result, floating point operations are
always executed through the OoO IQ. Our design has no
such limitation. FXA potentially increases register file reads as
operands first need to be read for in-order execution and then
again for OoO execution if in-order execution of an instruction
fails. A potential solution is to pass the operands from in-
order to OoO execution engine, but that requires moving the
operands and storing them int the IQ. (see the detail setup of
[6] in table I and table II).

We compared our three designs with FXA in terms of
performance and performance per energy, as shown by the
right most bars of figure 6 and figure 7, respectively. In terms
of performance, FXA outperforms the single FIFO design
because FXA uses an OoO IQ issue width of 2, or twice that
of our design. Our dual FIFO design performs about as well
as FXA. Finally, the triple FIFO design that address all stall
sources, outperforms FXA both in terms of performance and
performance per energy. The energy breakdown of FXA is
shown in the middle stacked bars of figure 8. It saves 40% of
the energy compare to the baseline. Based on this result, the
main reasons our final design consumes less energy compared
to FXA is having half of the IQ issue width of FXA and

OoO 100.0%

a) Baseline
OoO

53.0%

In-Order

10.0%

saved

37.0%

b) FXA

OoO

19.0%saved
51.0%

R@D-FIFO

14.0% AR@D-FIFO

13.0%

LDTail-FIFO3.0%

c) FIFOrder

Fig. 8. Energy breakdown of a) the dynamic instruction window for the out-
of-order 4-wide baseline, b) FXA [6], and c) the proposed FIFOrder micro-
architecture with three 3-wide FIFO queues and a 1-wide IQ across SPEC2006
benchmarks.

offloading the majority of the instructions from the IQ to the
FIFOs. Also since FXA passes all of the instructions through
the in-order pipeline, before forwarding them to OoO pipeline,
regardless of the readiness of their operands, about 7% of its
energy is consumed in the in-order part of the pipeline.

One of our contributions is reducing the instruction wake-
up and select while keeping the IQ size unchanged. The
execution can not get started even if only a single operand
of an instruction with multiple input operands is missing.
Therefore, including this type of instructions in the pool of
instruction to be selected not only does not provide more
flexibility for instruction selection but also increases the cost.
Ernst et al. [11] proposed a separate wake-up and select policy
for instructions with more than one pending-sources. For this
class of instructions, they only compare the register renaming
tag for the input operand which has the longest slack (last
arriving input) to reduce the total number of tag comparison.
This problem is addressed by introducing a last tag speculation
technique that predicts which input operand of an instruction
arrives last, and is used for scheduling execution. However, this
approach can identify instructions whose operands are both not
ready, which does not simplify later instruction selection as we
include them in NR@D instructions.

Brown et al. [12] reduced the cost of instruction wake-
up and selection by reintroducing pipeline techniques. They
pipeline the wakeup and select loops and introduce smaller
loops,a critical, single-cycle loop for wakeup; and a non-
critical, potentially multi-cycle, loop for select but still all of
the instruction pass through wakeup and select stages during
instruction scheduling. In comparison, our solution reduces the
cost of instruction scheduling for all classes of instructions
with all of their operands ready to the ones which have all
operands pending. For the ones with two pending operands it
is impossible to ignore wakeup and select however, we applied
a cheaper IQ (1-wide issue width) for this type of instructions.

Long Term Parking [13] and Load Slice Core [14] classified
instruction as urgent and non-urgent, where urgent instructions
form a chain of address generating instructions leading up to
a load. LDTail instructions are conceptually a subset of non-
urgent instructions. In [14] they steer the urgent instructions to
a secondary FIFO instruction queue to enable MLP-generating
urgent instructions to bypass other instructions in an in-order
pipeline. In LTP [13], they steer non-urgent instructions to a
FIFO (parking) to reduce the IQ pressure. Since non-urgent
instructions are woken-up out-of-order, and the FIFO does
not have an out-of-order search capability, all instructions
are inserted back to the IQ before wakeup. In our design
instructions that are placed in the FIFO queues are issued
directly from their respective queues, and do not need to pay
the latency and energy cost of being re-inserted into the IQ.

VI. CONCLUSION

Improving out-of-order processor performance has long
required increasing the size and width of the instruction queue.
However, as this structure must search for independent instruc-
tions and read out ready instructions with specific priorities,
scaling it up has proven to be extremely energy costly.

To address this problem, we identified classes of instructions
that do not benefit from out-of-order scheduling, and proposed
an architecture, FIFOrder, that takes advantage of this classi-
fication to efficiently execute them. In FIFOrder we use cheap
FIFO queues to store and issue instructions that are ready at
dispatch or soon to be ready (60% of dynamic instructions),
thereby reducing the load on the IQ, and allowing us to reduce
its issue width to just 1.

The combination of fewer instructions in the expensive IQ
and its reduced width allows us to provide a 50% energy
savings while delivering 8% improved performance over a
baseline 4-wide OoO processor.

ACKNOWLEDGEMENT

This work was supported by the Knut and Alice Wallen-
berg Foundation through the Wallenberg Academy Fellows
Program.

REFERENCES

[1] S. Palacharla, N. P. Jouppi, and J. E. Smith, “Complexity-effective
superscalar processors,” SIGARCH Comput. Archit. News, vol. 25, no. 2,
pp. 206–218, May 1997.

[2] Y. Kora, K. Yamaguchi, and H. Ando, “Mlp-aware dynamic instruction
window resizing for adaptively exploiting both ilp and mlp,” in Pro-
ceedings of the 46th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO-46, 2013, pp. 37–48.

[3] M. Alipour, T. E. Carlson, and S. Kaxiras, “Exploring the performance
limits of out-of-order commit,” in Proceedings of the Computing Fron-
tiers Conference, ser. CF’17, 2017, pp. 211–220.

[4] A. Jimborean, K. Koukos, V. Spiliopoulos, D. Black-Schaffer, and
S. Kaxiras, “Fix the code. don’t tweak the hardware: A new com-
piler approach to voltage-frequency scaling,” in Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, ser. CGO ’14, 2014, pp. 262:262–262:272.

[5] I. Corporation, “Intel R© 64 and ia-32 architec-
tures optimization reference manual,” http://www.
intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-optimization-manual.html, Jun. 2016.

[6] R. Shioya, M. Goshima, and H. Ando, “A front-end execution archi-
tecture for high energy efficiency,” in Proceedings of the 47th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO-
47, 2014, pp. 419–431.

[7] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: A
simulation framework for cpu-gpu computing,” in Proceedings of the
21st International Conference on Parallel Architectures and Compilation
Techniques, ser. PACT ’12, 2012, pp. 335–344.

[8] J. L. Henning, “Spec cpu2006 benchmark descriptions,” SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[9] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi, “Cacti-
p: Architecture-level modeling for sram-based structures with advanced
leakage reduction techniques,” in Proceedings of the International
Conference on Computer-Aided Design, ser. ICCAD ’11, 2011, pp. 694–
701.

[10] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and
N. P. Jouppi, “Mcpat: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proceedings
of the 42Nd Annual IEEE/ACM International Symposium on Microar-
chitecture, ser. MICRO 42, 2009, pp. 469–480.

[11] D. Ernst and T. Austin, “Efficient dynamic scheduling through tag elim-
ination,” in Proceedings of the 29th Annual International Symposium on
Computer Architecture, ser. ISCA ’02, 2002, pp. 37–46.

[12] M. D. Brown, J. Stark, and Y. N. Patt, “Select-free instruction scheduling
logic,” in Proceedings of the 34th Annual ACM/IEEE International
Symposium on Microarchitecture, ser. MICRO 34, 2001, pp. 204–213.

[13] A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer, A. Perais,
A. Seznec, and P. Michaud, “Long term parking (ltp): Criticality-aware
resource allocation in ooo processors,” in Proceedings of the 48th
International Symposium on Microarchitecture, ser. MICRO-48, 2015,
pp. 334–346.

[14] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout,
“The load slice core microarchitecture,” in Proceedings of the 42Nd
Annual International Symposium on Computer Architecture, ser. ISCA
’15, 2015, pp. 272–284.

