
Speculative Dynamic Vectorization to Assist Static

Vectorization in a HW/SW Co-designed Environment
Rakesh Kumar

1
, Alejandro Martínez

2
, Antonio González

1, 2

1 Department of Computer Architecture, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
2 Intel Barcelona Research Center, Intel Labs, 08034, Barcelona, Spain

rkumar@ac.upc.edu, alejandro.martinez@intel.com, antonio.gonzalez@intel.com

Abstract—Compiler based static vectorization is used widely

to extract data level parallelism from computation intensive

applications. Static vectorization is very effective in vectorizing

traditional array based applications. However, compilers

inability to reorder ambiguous memory references severely limits

vectorization opportunities, especially in pointer rich

applications. HW/SW co-designed processors provide an

excellent opportunity to optimize the applications at runtime.

The availability of dynamic application behavior at runtime will

help in capturing vectorization opportunities generally missed by

the compilers.

This paper proposes to complement the static vectorization

with a speculative dynamic vectorizer in a HW/SW co-design

processor. We present a speculative dynamic vectorization

algorithm that speculatively reorders ambiguous memory

references to uncover vectorization opportunities. The hardware

checks for any memory dependence violation due to speculative

vectorization and takes corrective action in case of violation. Our

experiments show that the combined (static + dynamic)

vectorization approach provides 2x performance benefit

compared to the static vectorization alone, for SPECFP2006.

Moreover, dynamic vectorization scheme is as effective in

vectorization of pointer-based applications as for the array-based

ones, whereas compilers lose significant vectorization

opportunities in pointer-based applications.

Keywords— HW/SW Co-designed processor, Vectorization,

Speculation, Dynamic optimizations

I. INTRODUCTION

Single Instruction Multiple Data (SIMD) accelerators

form an integral part of modern microprocessors. These can be

found in processors from different computing domains like

general purpose processors [2] [9] [16], Digital Signal

Processors [5], gaming consoles [13] [25] as well as

embedded architectures [6]. SIMD accelerators are tailored to

exploit data level parallelism from modern multimedia,

scientific and throughput computing applications. Since these

accelerators perform the same operation on multiple pieces of

data, they just require duplicated functional units and a very

simple control mechanism. Due to this simplicity, SIMD
accelerators grow in size with each new generation. For

example, Intel´s MMX [2] had vector length of 64-bits, which

was increased to 128-bits in SSE extensions [2]. Intel´s recent

SIMD extension AVX [2] and Intel´s Xeon Phi [4] supports

256-bit and 512-bit vector operations respectively.
Code generation for SIMD extensions has always been

challenging. In the early days, programmers used to target
these extensions mainly using in-line assembly or specialized
library calls. Then, automatic generation of SIMD instructions

(auto-vectorization) was introduced in compilers [7][18],
which borrowed their methodology from vector compilers.
These compilers target loops for generating code for SIMD
accelerators. Later, S. Larsen et al. [14] introduced Superword
Level Parallelism (SLP) in which they target basic blocks
instead of whole loops for vectorization. These static
approaches to vectorization are effective for traditional
applications where memory is referenced through explicit array
accesses, whereas modern applications make extensive use of
pointers. Due to this, disambiguation of a pair of memory
accesses becomes difficult at compile time. Since memory
operations form the foundation of vectorization, current static
approaches are limited in extracting SIMD parallelism.

In this paper, we propose to have dynamic vectorization as
a complimentary optimization to the compiler based static
vectorization. It is important to note that we do not propose to
eliminate static vectorization altogether because there are
several complex and time consuming transformations which
are not straightforward to apply at runtime and are too costly
like loop distribution, loop interchange, loop peeling, memory
layout change, algorithm substitution etc. However, static
vectorization alone fails to capture significant vectorization
opportunities due to conservative pointer disambiguation
analysis. To handle these cases we propose to have a
speculative dynamic vectorizer which can speculatively reorder
ambiguous memory references to uncover vectorization
opportunities. Moreover, in the absence of loops, the scope of
vectorization for static vectorization is a single basic block. We
propose to vectorize bigger code regions which include
multiple basic blocks and can be created at runtime following
the biased direction of branches.

Furthermore, we propose a speculative dynamic
vectorization algorithm which can be implemented in the
software layer of a HW/SW co-designed processor1. The
proposed algorithm speculatively reorders and vectorizes
memory operations. During execution, the hardware checks for
any memory dependence violations caused by speculative
vectorization. If any violation is detected, the hardware rolls
back to a previously saved check-point and executes a non-
speculative version of the code. The hardware support required
for speculative execution is already provided by co-designed
processors like Transmeta Crusoe [10], BOA [23] etc.
Therefore, no additional hardware support is needed from
speculative vectorization point of view. This hardware support
is also one of the reasons for choosing HW/SW co-designed
processors over dynamic binary optimizers in our proposals.

Moreover, in the absence of static compiler vectorization,

our algorithm can work as a standalone vectorizer also.

1
Section II BACKGROUND provides the background about HW/SW Co-

designed Processors.

Therefore, the legacy code which was not compiled for any

SIMD accelerator can be vectorized using the proposed

algorithm. The co-designed nature of the processor makes the

vectorization portable. As a result, the algorithm can be

modified to transparently target a different SIMD accelerator.

It is important to note that the proposed algorithm does not
require any compiler or operating system

support/modification. The main contributions of this paper can

be summarized as:

• Proposes a complementary dynamic vectorization to

the static compiler vectorization.

• Proposes to increase the vectorization scope utilizing

the dynamically discovered control flow: biased

branch directions and dynamic loop trip counts.

• A runtime speculative vectorization algorithm :

o that is equally good in vectorizing array and

pointer based applications.
o that is able to vectorize legacy code.

• Experimental evaluation of the proposed algorithm

and it’s comparison with GCC vectorizer.

The rest of the paper is organized as follows: Section II
provides a background on HW/SW co-designed processors.
Section III briefly provides the motivation for the work
presented in this paper. Section IV describes the proposed
algorithm with an example. Section V explains the speculation
and recovery mechanism. Evaluation of the algorithm using
SPECFP2006, Physicsbench and UTDSP applications is
presented in Section VI. Section VII presents the related work
and Section VIII concludes.

II. BACKGROUND

HW/SW Co-designed processors [10][23] employ a

software layer that resides between the hardware and the

operating system. This software layer allows host and guest

ISAs to be completely different, by translating the guest ISA

instructions to the host ISA dynamically. We define host ISA

as the ISA which is implemented in the hardware, whereas,

guest ISA is the one for which applications are compiled. The

basic idea behind these processors is to have a simple host
ISA to reduce power consumption and complexity.

The software layer translates the guest ISA instructions to

the host ISA in multiple phases. Generally, in the first phase,

guest ISA instructions are interpreted. In the rest of the phases,

guest code in translated and stored in a code cache, after

applying several dynamic optimizations, for faster execution.

The number of translation phases and optimizations in each

phase are implementation dependent.
Hardware support is needed for efficient and correct

emulation of the guest ISA instructions. Memory speculation is
the key to several optimizations performed by HW/SW co-
designed processors. To ensure the correctness of memory
speculation, hardware support is provided to detect speculation
failure and recover from it. Furthermore, hardware support is
necessary for providing precise exceptions and detecting self-
modifying code. Moreover, overhead of indirect branches and
function returns can be reduced by having some hardware
support [15].

III. MOTIVATION

Traditional compile time loop vectorization is effective
for applications involving explicit array accesses since

memory dependence analysis are relatively easy. Significant

performance gains have been reported using compiler

vectorization in the past[7][14]. However, one of the major

obstacles in vectorization at compile time is memory

disambiguation and dependence testing. J. Holewinski et. al.

[12] showed that static vectorization fails to extract significant

vectorization opportunities especially in pointer-based

applications. Furthermore, S. Maleki et al. [17] showed that

the modern compilers, including Intel ICC, IBM XLC and

GNU GCC, are limited in vectorizing modern applications.

Extensive use of pointers and pointer arithmetic in these
applications complicate memory disambiguation and

dependence testing. Even though research shows that a pair of

memory accesses rarely alias until and unless aliasing is

obvious [11], compilers generate conservative code to ensure

correctness which limits vectorization opportunities [22]. For

example, Figure 1a shows a loop that performs pointer

arithmetic. During compilation, if the compiler cannot prove

that the two pointers always reference different memory

locations, this loop cannot be vectorized.

void example(double *a, double *b)
{
 int i;
 for (i = 0; i < NUM_ITR; i++)
 a[i] += b[i] * CONST;
}

a) An example loop with pointers

loop: I0 ld_64 v2, M [r2 + r1 * 8]
 I1 mulsd v3, v2, v1
 I2 ld_64 v4, M [r3 + r1 * 8]
 I3 addsd v5, v4, v3
 I4 st_64 v5, M [r3 + r1 * 8]
 I5 add r4, r1, 1

 I6 ld_64 v6, M [r2 + r4 * 8]
 I7 mulsd v7, v6, v1
 I8 ld_64 v8, M [r3 + r4 * 8]
 I9 addsd xmm0, v8, v7
 I10 st_64 xmm0, M [r3 + r4 * 8]
 I11 add r1, r4, 1
 I12 cmp r1, r0
 I13 jne loop

b) Unrolled lower level representation

 I0 Pack2 v1, v1, v1
loop: I1 ld_128_spec v2, M [r2 + r1 * 8]
 I2 mulpd v3, v2, v1
 I3 ld_128 v4, M [r3 + r1 * 8]
 I4 addpd v5, v4, v3

 I5 st_128_spec v5, M [r3 + r1 * 8]
 I6 add r1, r1, 2
 I7 cmp r1, r0
 I8 jne loop

I9 Unpack xmm0, v5

c) Speculatively vectorized version

Figure 1. An Example Loop with pointer arithmetic.

2
Pack/Unpack instructions are explained in Section IV B) Vectorization.

As stated before, a recent approach to vectorization, SLP

[14], performs vectorization at basic block level. Whereas

traditional loop vectorizers vectorize either whole loop or

nothing, SLP may vectorize portions of a loop if the whole

loop is not vectorizable. SLP starts by identifying adjacent

memory accesses and then follows their def-use and use-def
chains. Figure 1b shows low level code for the loop of Figure

1a after unrolling it once. In this case even though I0 and I6

are adjacent memory references, they cannot be packed by

SLP since I4 and I6 may alias. Thus, memory dependences

affect both traditional loop vectorizers as well as modern SLP.

One possible solution that compilers may provide is to

generate two versions of the loop: one without vectorization

and another vectorized with a runtime test to check for

aliasing. However, this solution is not optimal because: 1)

runtime test has to be executed every time before executing

the loop, thus resulting in performance loss. Moreover, as the

number of arrays to be checked for aliasing increases the
number of checks to be performed also increases.
2) Having multiple versions of the loop increases the static
code footprint of the application, which results in higher
instruction cache size requirements.
 Another way of vectorizing the example loop is through
“__restrict annotation”. However, it requires source code
modification which is not always possible e.g. unavailability of
the source code or any other reason. In contrast, the proposed
mechanism does not require any source code modification.
Moreover, the “__restrict annotation” can not help in
vectorization of the loops with complicated memory
dependence. We choose a simple loop in this example to easily
explain the proposed vectorization algorithm in Section IV D.

HW/SW Co-designed processors provide an excellent
opportunity to handle these cases: instead of generating
multiple versions, a single speculatively vectorized version can
be generated by the software layer and the hardware can be
tailored to execute the vectorized code efficiently and safely.
The proposed algorithm speculatively reorders memory
operations to expose vectorization opportunities. For the
example code of Figure 1b, our algorithm speculatively
assumes that I4 and I6 will never alias and reorders them to
pack I0 and I6 together, as shown in Figure 1c. Moreover, due
to the speculative reordering, I1 is converted to a speculative
load and I5 to a speculative store (in vectorized code). If during
the execution it turns out that I1 and I5 access overlapping
memory locations, the hardware will detect this condition and
will take corrective measures. In this example, by vectorizing
speculatively we are able to vectorize the whole loop, whereas
loop vectorization and SLP could not find vectorization
opportunities.

Therefore, having two complementary vectorizing schemes
helps to get the best of both the worlds. Static vectorization
applies more complex and time consuming loop
transformations whereas dynamic vectorization speculatively
vectorizes ambiguous memory references and dependent
operations.

IV. VECTORIZATION ALGORITHM

This section provides the details of the proposed
vectorization scheme. Before explaining the vectorization

algorithm itself, first we explain binary

translation/optimization steps of our (a typical) HW/SW co-

designed processor. It helps us understand the context in

which vectorization is done.
The software layer of our co-designed processor is called

Translation Optimization Layer (TOL). TOL operates in three
translation modes for generating host code from guest x86
code: Interpretation Mode (IM), Basic Block Translation Mode
(BBM) and Superblock Translation Mode (SBM).
Vectorization is done in SBM, which is the most aggressive
translation/optimization level, after applying several standard
compiler optimizations.

A. Pre-Vectorization Steps

Before starting with vectorization we create a superblock,
apply standard compiler optimizations on the superblock and
generate a Data Dependence Graph (DDG). Each of these steps
is explained below:

1) Superblock Creation: TOL starts by interpreting guest

x86 instruction stream in IM. When a basic block is executed

more than a predetermined number of times, TOL switches to

BBM. In this mode, the whole basic block is translated and

stored in the code cache and the rest of the executions of this

basic block are done from the code cache. Moreover, branch

profiling information for direction and target of branches is

also collected. Once the execution of a basic block exceeds

another predetermined threshold, TOL creates a bigger

optimization region, called superblock, using the branch

profiling information collected during BBM.

A superblock generally includes multiple basic blocks

following the biased direction of branches. Moreover,

branches inside the superblocks are converted to “asserts” so

that a superblock can be treated as a single-entry, single-exit

sequence of instructions. This gives the freedom to reorder

and vectorize the instructions from multiple basic blocks.

“Asserts” are similar to branches in the sense that both checks

a condition. Branches determine the next instruction to be

executed based on the condition, however asserts have no such

effect. If the condition is true assert does nothing. However, if

the condition evaluates to false, the assert “fails” and the

execution is restarted from a previously saved checkpoint in

IM. Furthermore, while creating a superblock, if a loop is

detected, it is unrolled. Currently, we unroll loops with a

single basic block.

2) Pre-optimizations: A pre-optimization phase applies

several conventional compiler optimizations in order to

remove the dead code and improve the quality of the code.

First of all, the superblock is converted into Static Single

Assignment (SSA) form to remove anti and output

dependences. Then, the optimizations Constant Propagation,

Copy Propagation, Constant Folding, Common Sub-

expression Elimination and Dead Code Elimination are

applied.
The next step is to generate the Data Dependence Graph

(DDG). During DDG creation, we perform memory

disambiguation analysis and consecutiveness analysis. If

memory disambiguation analysis cannot prove that a pair of

memory operations will never/always alias, it is marked as

“may alias”. In case of reordering, the original memory

instructions are converted to speculative memory operations.

Similarly, consecutiveness analysis finds adjacent memory

accesses and marks them for vectorization. Apart from this,
Redundant Load Elimination and Store Forwarding are also

applied during DDG phase so that redundant memory

operations are removed before vectorization.

B. Vectorization

The vectorizer packs together a number of independent

scalar instructions, which perform the same operation, and
replaces them with one vector instruction; the number of

scalar instructions packed depends on the data-types of scalar

instructions. Therefore, vectorization reduces dynamic

instruction count and improves performance. Before

describing the algorithm, we define a set of conditions that a

pair of instructions must satisfy to be included in the same

pack:

• The instructions must perform the same operation.

• The instructions must be independent.

• The instructions must not be in another pack.

• If the instructions are load/store, they must be
accessing consecutive memory locations.

 Vectorization starts by marking all the instructions which

are candidates for vectorization. Moreover, we mark First

Load and First Store instructions. First Load/Store instructions

are those for which there are no other loads/stores from/to

adjacently previous memory locations. For example, if there is

a 64-bit load instruction IL that loads from a memory location

[M] and there is no 64-bit load instruction that loads from

address [M – 8], we call IL First Load.

Vectorization begins by packing consecutive stores,

starting from a First Store. The decision of starting with stores
instead of loads is based on the observation that a given kind

of operation always has the same number of predecessors, e.g.

all the additions always have two predecessors, whereas the

number of successors may vary depending on how many

instructions consume the result. Consequently, following a

bottom-up approach results in a more structured tree traversal

than a top-down approach.

Once a pack of stores is created, their predecessors are

packed, before packing other stores, if they satisfy the packing

conditions. Moreover if the last store in the pack has a next

adjacent store, it is marked as First Store so that a new pack

can start from it.
Once all the stores are packed and their predecessor/

successors chains have been followed, we check for remaining

load instructions that satisfy the packing conditions and pack

them in the same way as stores.

While traversing the predecessor/successor chains, if we

find out that the predecessors of a pack cannot be vectorized, a

Pack instruction is generated. This Pack instruction collects

the results of all the predecessors into a single vector register

and feeds the current pack. Similarly if all the successors of a

pack cannot be vectorized, an Unpack instruction is generated.

This Unpack instruction distributes the result of the pack to

the scalar successor instructions.

Moreover, Pack instructions are needed if a pack contains

an instruction whose input is live-in of the superblock.

Similarly, Unpack instructions are needed to put the results

from a pack to the architectural registers which are live-outs of
the superblock.

C. Static vs Dynamic Vectorization

Loops are the basic program structures that the

vectorizers target for extracting parallelism through

vectorization. Several loop transformations are sometimes

needed to make a loop vectorizable. The transformation like
loop distribution, loop interchange, loop peeling, node

splitting, memory layout change, algorithm substitution etc are

generally applied to make a loop vectorizable. These time

consuming transformations are better suited at compile time

than at runtime. However, compile time vectorization suffers

from several limitation like: 1) limited vectorization

opportunities due to conservative memory disambiguation

analysis, 2) scope of vectorization is limited to basic blocks if

the loops cannot be unrolled e.g. due to complex control flow

and 3) legacy code cannot be vectorized.

The proposed speculative dynamic vectorization gets rid of
all these limitations. The proposed algorithm relaxes the

restrictions on memory disambiguation by speculatively

reordering/vectorizing the ambiguous memory references.

Since the scope of vectorization for the proposed algorithm is

a superblock, it crosses the basic block boundaries to vectorize

instructions from multiple basic blocks. Moreover, for the

loops, where the number of iterations are not known statically,

it is difficult to decide the unroll factor at compile time. The

availability of dynamic application behavior, at runtime,

allows to detect the loop unroll factor dynamically.

Furthermore, since the dynamic vectorization is applied at

runtime on the program binary and not at the source code
level, the legacy code can also be vectorized. Therefore, the

combination of static and dynamic vectorization extracts the

maximum vectorization opportunities.

D. Working Through an Example

Figure 2a shows the DDG for the example code of Figure 1b.

Since the loop is unrolled once and there is no loop carried
dependences, assumed speculatively, the two trees are

completely separated from each other. For the sake of

simplicity, we do not show loop control code in this figure.

Also, pairs of ambiguous memory reference instructions like

I4 and I6 are considered independent speculatively. As our

algorithm begins with consecutive stores, the stores I4 and I10

are packed together as shown in Figure 2b. Moreover, the new

store instruction is speculative one and I6 is also converted to

speculative load. Following the predecessor tree, we see that

I3 and I9 satisfy the packing conditions and vectorize them.

Notice here that I9 writes to a live-out architectural register.
As a result, we have to generate an Unpack instruction to write

the result to the live-out register. This is shown in Figure 2c.

a)

b)

c)

d)

e)

f)

Figure 2. Example for vectorization of the code of Figure 1b. a). Shows the DDG for the loop which is unrolled once. We don´t show loop control code for the

sake of simplicity. Since two iterations are completely independent we have two completely separated trees. Two arrows coming in to I1 and I7 represents live-in

and arrow going out of I9 represents live-out of the superblock. Also, speculatively, we assume there is no dependence between the memory instructions until its

obvious b) Shows the state of DDG after vectorizing consecutive stores, also, the new store instruction is speculative one. c) Then, we follow the predecessor

chain and pack addsd instructions. Since I9 writes to an architectural register, we need to unpack the results and write to the architectural register. d) Packs two

mulsd instructions and since one of the inputs to both of these instructions is a live-in, a Pack instruction is also generated to pack the inputs in a single vector

register. e) and f) pack remaining load instructions and f) Shows the final state.

Traversing up the tree we vectorize multiplication

instructions I1 and I7. One of the inputs of the multiplication

instructions is a live-in to the superblock. Hence, we generate

a Pack instruction to put the live-in values in a vector register

as shown in Figure 2d. As explained earlier, before packing
the other predecessors of additions (I3 and I9), we traverse the

tree up for the predecessors of I1 and I7. We discover that the

loads I0 and I6 are independent and consecutive, thus, they are

packed next. Also, the new vector load instruction is

speculative since I6 was speculative, Figure 2e. Finally,

Figure 2f shows the second inputs of additions (I3 and I9): the

two load instructions (I2 and I8) are also vectorized. Pack and

Unpack instructions generated to read and write architectural
registers in this example can be moved outside the loop as

loop invariant code, as shown in Figure 1c. This way, we are

able to vectorize the whole loop.

I0:

ld_64

I1:

mulsd

I2:

ld_64

I3:

addsd

I4:

st_64

I6:

ld_64

I7:

mulsd

I8:

ld_64

I9:

addsd

I10:

st_64

I0:

ld_64

I1:

mulsd

I2:

ld_64

I3:

addsd

I6:

ld_64_s

I7:

mulsd

I8:

ld_64

I9:

addsd

I4 I10:

st_128_s

I0:

ld_64

I1:

mulsd

I2:

ld_64

I6:

ld_64_s

I7:

mulsd

I8:

ld_64

I3 I9:

addpd

I4 I10:

st_128_s
unpack

I0:

ld_64

I1 I7:

mulpd

I2:

ld_64

I6:

ld_64_s

I8:

ld_64

I3 I9:

addpd

I4 I10:

st_128_s
unpack

pack

I1 I7:

mulpd

I2:

ld_64

I0 I6:

ld_128_s

I8:

ld_64

I3 I9:

addpd

I4 I10:

st_128_s
unpack

pack

I2:

mulpd

I1:

ld_128_s

I3:

ld_128

I4:

addpd

I6:

st_128_s

I5:

unpack

I0:

pack

V. SPECULATION AND RECOVERY

Memory speculation is a key optimization to achieve
performance in HW/SW co-designed systems. For example,

Transmeta Crusoe [10] reports that, on average, suppressing

memory reordering causes 10% and 33% performance loss in

operating system boots and user applications respectively.

Since, memory operations play an important role in

vectorization, by freely reordering them, consecutive memory

references can be packed together. This not only helps in

utilizing memory bandwidth but also in vectorization of their

dependent arithmetic operations. Furthermore, it is important

to note that HW/SW co-designed processors like Transmeta

Crusoe, BOA etc provide hardware support for speculation

and recovery even though they do not have any dynamic
vectorization scheme. Therefore, we assume this hardware

support to be present in our baseline architecture. Hence, from

the vectorization point of view, we do not need to add any

new hardware support for speculation and recovery. This

section briefly explains how the speculation and recovery

mechanism works in HW/SW co-designed processors.

A combination of software and hardware mechanisms is

used to detect speculation failure and subsequent recovery.

The software labels each load/store instruction with a

sequence number in the original program order. If a pair of

load-store or store-store instructions, that may alias, is
reordered, the original load/store instructions are converted to

“speculative load/store” instructions.

The hardware has two sets of architectural registers: a

working set and a shadow copy. Before starting the execution

of speculated code, a copy of the working set is saved into the

shadow registers (Saving a checkpoint). During the execution,

only the working copy of the registers is updated. In the case

of speculation failure, the register state is restored by copying

the contents of shadow registers to the working copy.

Restoring the memory state is a little more complicated since

it is not practical to have two copies of the whole memory

state. To track the changes in the memory state, a store buffer
is used. During the normal execution, store instructions write

to the store buffer instead of directly writing to the memory. In

the case of speculation failure, the contents of the store buffer

are discarded whereas they are forwarded to the memory if the

speculated code executes successfully.

To detect a speculation failure, the hardware maintains a

table to record address and size of all the memory locations

accessed by “speculative load/store” instructions in the current

superblock. Moreover, the sequence number of “speculative

load/store” instructions is also recorded in the table. During

the execution, if the hardware detects:

• that a speculative memory instruction with higher

sequence number is executed before another

speculative memory instruction with lower sequence

number and

• they access overlapping memory locations,

an exception in raised. In this case, the contents of the store

buffer are flushed; register values from the shadow registers

are copied to the working set; (This has the effect of restoring

the earlier saved checkpoint) and the execution is restarted in

Interpretation Mode. On the other hand, in case of successful

execution of speculated code, values in the store buffer are

forwarded to the memory and the contents of the shadow

registers are discarded.

Seq Num Seq Num
 1 ld_64 v1, M[x] 2 st_64_s v2, M[y]

 2 st_64 v2, M[y] 1 ld_64_s v1, M[x]

a) Orignal Code Sequenc) b) Reordered Code Sequence

PC --> 1 ld_64_s v1, M[x]

Seq Num Address Size

2 y 8

c) Hardware Table State

Figure 3. Speculation Failure Detection Example.

Figure 3 shows an example of speculation failure

detection mechanism. Figure 3a shows the original code
sequence with two memory references where the relation

between the two memory addresses is unknown. The two

instructions are labeled in the program order. Figure 3b shows

the reordered code sequence. The instructions maintain their

sequence number. However, they are converted to speculated

instructions to inform the hardware to check them for

speculation failure. Figure 3c shows the hardware table state

just before executing the speculated load instruction. The

program counter points to the current instructions and the

table has entry for the executed speculated store instruction.

At this point, since the instruction with higher sequence

number(2) has been executed before the instruction with
smaller sequence number(1), if the address of the current

speculated load instruction overlaps with the address of the

speculated store instruction, the hardware will generate an

exception and will go the recovery mode.

If the rate of speculation failures exceeds a predetermined

limit in a particular superblock, it is recreated without

reordering ambiguous memory references.

With this speculation and recovery support available in

the baseline architecture, speculatively vectorized code can be

executed correctly without any additional hardware support.

VI. PERFORMANCE EVALUATION

A. Experimental Framework

To evaluate the proposals, we use DARCO [21], which is

an infrastructure for evaluating HW/SW co-designed virtual

machines. DARCO executes guest x86 binary on a PowerPC-

like RISC host architecture. Since DARCO emulates floating

point code in software, we extended the infrastructure to add

floating point scalar and vector operations. The proposed

algorithm was implemented in TOL to support vectorization.

In our experiments, we assume that the host architecture

supports a vector width of 128-bits. Moreover, we consider

Figure 4 Percentage of Dynamic Instructions Eliminated by GCC, TOL and GCC + TOL Vectorizations

only floating point operations for vectorization (because most

SIMD optimizations tend to focus on them) and no integer

operation is vectorized. For this reason, we show only floating

point instructions in the results presented in this section.

For the speculation and recovery, as discussed in Section

V, the hardware maintains a table where it stores the sequence

number, direction and size of speculative load/store

instructions. We implement this table with 1K entries. Optimal

duration/position to take a checkpoint is a different research

problem and is out of scope of this paper. For simplicity we

take checkpoint in the beginning of every superblock. We
implement the store buffer with 1K entries. Moreover to avoid

overflow of the store buffer we restrict the number of

load/store instructions to be 1K in a superblock. Since we take

checkpoint in the beginning of every superblock and a

superblock cannot have more than 1K load/store, the store

buffer can never overflow.

B. Benchmarks

To measure the success of the proposals we use a set

applications from SPECFP2006[1] and Physicsbench[27]

benchmarks suites. Furthermore, to measure the effectiveness

of the proposed algorithm in vectorizing pointer based

applications we use kernels from UTDSP benchmark suite [3].

UTDSP benchmark suite contains array and pointer based

version of several signal processing kernels. Both versions

provide identical functionality, the only difference being the

use of arrays or pointers to traverse the data structures.

SPECFP2006 benchmarks operate on double-precision,
whereas Physicsbench and UTDSP operate on single-precision

floating point values.

All the benchmarks are executed till completion.

SPECFP2006 benchmarks are executed using “train” input.

Moreover, choose only the benchmarks which have less than

150 billion dynamic instructions to keep the execution time

manageable. The benchmarks are compiled with gcc version

4.5.3, optimization flags “-O3 –ffast -math -fomit-frame-pointer” and

“-mfpmath=sse -msse3” vectorization flag. To disable

vectorization “-fno-tree-vectorize” flag is used.

C. FP Dynamic Instruction Elimination

This section presents the percentage of dynamic

instructions eliminated by 1) only GCC, 2) only TOL and 3)

GCC+TOL vectorizations, first for SPECFP2006 and

Physicsbench benchmarks suites and then for UTDSP Kernels.
GCC and TOL represent static and dynamic vectorization

respectively. For TOL vectorization the input binary is

compiled by GCC but not vectorized. Also, TOL vectorization

results show its effectiveness in vectorizing legacy code, since

input binary is not vectorized for any SIMD accelerator. For

GCC+TOL case, the input binary to TOL is already vectorized

by GCC. The results of this case show the vectorization

opportunities missed by GCC but captured by TOL.

1) Benchmarks: For SPECFP2006, on average, the

combined GCC+TOL approach eliminates approximately

twice the number of instructions than only the static GCC

vectorization as shows in Figure 4. GCC+TOL vectorization

outperforms GCC for all the SPECFP2006 benchmarks except

for 436.cactusADM and 459.GemsFDTD. GCC completely

vectorizes these benchmarks and hence TOL does not get any

further vectorization opportunities. Therefore, instruction

elimination is same for GCC and GCC+TOL. It is also

important to note that on average, dynamic TOL vectorization

itself outperforms static GCC vectorization. Moreover, the

only benchmarks where GCC outperforms TOL are again

436.cactusADM and 459.GemsFDTD. The effectiveness of

TOL vectorization, to some extent, depends on the quality of

the input binary. For example, for 436.cactusADM the input

binary to TOL contains GCC unrolled version of the hottest

loop. This GCC unrolled loop does not fit in a single

superblock due to TOL´s restriction on the maximum number

of instructions in a superblock. Therefore, TOL vectorizer

could not vectorize it as good as GCC. For 459.GemsFDTD

GCC generates significant spill-fill code (to store/retrieve

temporary values to/from memory) in the frequently executed

loops. This spill-fill code affects TOL´s ability to vectorize

this benchmark.

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

60,00%

4
1

0
.b

w
a

ve
s

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

6
.c

a
ct

u
sA

D
M

4
4

4
.n

a
m

d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

4
.c

a
lc

u
li

x

4
5

9
.G

e
m

sF
D

T
D

4
7

0
.l

b
m

4
8

2
.s

p
h

in
x3

b
re

a
ka

b
le

co
n

ti
n

u
o

u
s

d
e

fo
rm

a
b

le

e
xp

lo
si

o
n

s

h
ig

h
sp

e
e

d

p
e

ri
o

d
ic

ra
g

d
o

ll

SP
E

C
FP

2
0

0
6

P
h

ys
ic

sb
e

n
ch

SPECFP2006 Physicsbench Avg

D
y

n
a

m
ic

 I
n

st
ru

c
ti

o
n

s
E

li
m

in
a

te
d

GCC

TOL

GCC + TOL

GCC could not vectorize Physicsbench mainly due to the

presence of complex control flow in the most frequently

executed loops. TOL also is unable to unroll these loops;

however, it extracts significant vectorization opportunities

through superblock vectorization. Since GCC fails to vectorize

anything, GCC+TOL and TOL vectorizations both eliminate
20% of dynamic instruction stream.

2) Kernels: Table I shows the vectorization results for

UTDSP kernels. As the table shows GCC vectorizes the array

based version of FFT, LATNRM and Matrix Multiplication

(MULT) but for the pointer based version it is able to

vectorize only LATNRM. On the contrary, performance of

TOL is same for the array and pointer based versions for all

the kernels except for IIR. Pointer based version of IIR

contains control flow inside the innermost loop and hence

TOL fails to vectorize it. Furthermore, once again a

combination of static and dynamic vectorization, GCC+TOL,

provides the best solution.

TABLE I. PERCENTAGE OF DYNAMIC INSTRUCTIONS ELIMINATED BY

GCC, TOL AND GCC+TOL VECTORIZATIONS

Benchmark Type GCC TOL GCC + TOL

FFT
Array 43.28% 52.70% 43.28%

Pointer 0.00% 49.87% 49.87%

FIR
Array 0.00% 0.00% 0.00%

Pointer -0.08% 0.00% -0.08%

IIR
Array 0.00% 32.52% 32.52%

Pointer 0.00% 0.00% 0.00%

LATNRM
Array 23.48% 7.38% 20.44%

Pointer 19.43% 17.85% 27.76%

LMSFIR
Array 0.00% 0.00% 0.00%

Pointer 0.00% 0.00% 0.00%

MULT
Array 64.72% 17.62% 64.72%

Pointer 0.00% 17.62% 17.62%

Avg
Array 21.91% 18.37% 26.83%

Pointer 3.23% 14.22% 15.86%

For the array based version, TOL vectorizer outperforms
GCC in vectorizing IIR. GCC is unable to resolve loop carried

dependences, whereas speculative vectorization helps TOL to

provide an instruction reduction of 32%. On the other hand,

GCC surpasses TOL vectorization for LATNRM and Matrix

Multiplication (MULT). In the current version of TOL

vectorizer, reductions are not implemented. Both LATNRM

and MULT have reductions, which TOL fails to vectorize.

Moreover, MULT has non-unit stride memory accesses, since

only one dimension of the matrix (either row or column) can

be accessed in the unit-stride manner. Compliers apply

optimizations like “memory layout change”, “data coping” etc

to convert non-unit stride accesses to unit-stride. However,
these optimizations are not directly applicable at runtime. This

adds to the loss of vectorization opportunities for TOL

vectorizer.

None of the vectorization schemes is able to extract

benefit for FIR and LMSFIR, mainly because of the presence

of control flow inside the innermost loop. Moreover, in these

benchmarks, the number of independent instructions in the

basic blocks (and even in superblocks) is not enough to enable

vectorization. It is also interesting to note that TOL eliminates

53% of instructions from array version of FFT, whereas

GCC+TOL eliminate only 43% (as does GCC alone). This is

because the input to TOL is completely vectorized by GCC

and TOL does not find any vectorization opportunities,

therefore the instruction reductions stays at 43% in

GCC+TOL case.

D. Vectorization Overhead

Vectorization overhead is the fraction of dynamic

instruction stream that corresponds to the vectorization of

superblocks by TOL. A high vectorization overhead might

offset the benefits of the vectorization. We calculate the

vectorization overhead as:

�
����� ��	
�	��
��� ������������� � ����� ��	
�	��
������ �������������

����� ����	
 �� � ���!" !�#�
�"�!��#
������ �������������

Our experimental results show that, on average, the

vectorization overhead is less than 0.6% of the dynamic
instruction stream, for all the benchmark suites. Hence, the

dynamic vectorization overhead is negligible compared to its

benefits.

E. Effectiveness of Memory Speculation

One of the main factors in the success of the proposed

vectorization scheme is the memory speculation. However, it
might backfire if there are lots of speculation failures. A

speculation failure results in executing un-optimized (and

without TOL vectorization) version of the code and if the rate

of speculation failure exceeds a predetermined threshold,

recreating the superblock without speculation. However, our

results show that, on average, we execute more than 99% of

the dynamic code in speculation mode. It reflects the fact that

number of speculation failures, and hence the overhead

associated with it, is negligible.

F. Performance

For the performance analysis, we model a simple in-order

processor, in congruence with the simple hardware design

philosophy of the co-designed processors, with issue width of

two. Microarchitectural parameters for the modeled processor

are given in Table II. For the performance analysis both the

floating point and integer instructions are considered, even

though TOL vectorizes only the floating point code.

TABLE II. PROCESSOR MICROARCHITECTURAL PARAMETERS

Parameter Value

L1 I-cache
64KB, 4-way set associative, 64-byte

line, 1 cycle hit, LRU

L1 D-cache
64KB, 4-way set associative, 64-byte

line, 1 cycle hit, LRU

Unified L2 cache
512KB, 8-way set associative, 64-byte

line, 6 cycle hit, LRU

Scalar Functional Units (latency)
2 simple int(1), 2 int mul/div (3/10)

2 simple FP(2), 2 FP mul/div (4/20)

Vector Functional Units (latency)
1 simple int(1), 1 int mul/div (3/10)

1 simple FP(2), 1 FP mul/div (4/20)

Registers 128-Integer, 128-Vector, 32-FP

Main memory Lat 128 Cycles

Figure 5 Execution speed for GCC, TOL and GCC + TOL vectorized code relative to unvectorized code. Higher is better.

Figure 5 shows the performance of the vectorized code

using the different vectorization schemes relative to the

unvectorized code, for SPECFP2006 and Physicsbench. The
performance results in the figure conform to the results of

Figure 4 for dynamic instruction elimination. For

SPECFP2006, GCC+TOL vectorization provides twice the

performance benefit than GCC alone (10% compares to 5% of

GCC alone). Also, TOL vectorization alone provides better

performance than GCC alone. It is interesting to note that for

410.bwaves and 433.milc GCC vectorized code gets a

slowdown even though Figure 4 shows dynamic FP

instruction elimination. The slowdown comes because of the

integer code. GCC adds more integer code than it vectorizes,

hence suffers a slowdown. Moreover, for these benchmarks
GCC+TOL provides worse performance than TOL alone

because GCC+TOL vectorizes GCC vectorized input with

extra integer code whereas TOL vectorizes unvectorized code.

Figure 6 Integer and Floating Point Instruction Distribution in SPECFP2006

and Physicsbench

 As GCC fails to vectorize anything in Physicsbench it does

not show any performance improvements. However, similar to

the results of Figure 4, GCC+TOL and TOL vectorizations
provide similar performance benefits for Physicsbench.

An interesting thing to note is that in Figure 4 GCC+TOL

vectorization, on average, eliminates 20% of the dynamic

instruction stream for both SPECFP2006 and Physicsbench.

However, SPECFP2006 gets more speed up than

Physicsbench as shown in Figure 5. This is because

percentage of floating point code is more in SPECFP2006

than in Physicsbench as shown in Figure 6.
Table III shows the speedup for UTDSP kernels. These

results also conform to the results of Table I. For the pointer

based version of the kernels GCC loses significant

performance compared to the array based version. However,

performance is not affected a lot for TOL vectorizer.

Furthermore, the combination of static and dynamic

vectorizations, GCC+TOL, is able to extract maximum

performance out of the kernels.

TABLE III. EXECUTION SPEEDUP RELATIVE TO UNVECTORIZED CODE.
HIGHER THE BETTER.

Benchmark Type GCC TOL GCC + TOL

FFT
Array 1.26 1.50 1.26

Pointer 1.00 1.50 1.50

FIR
Array 1.00 1.00 1.00

Pointer 1.05 1.00 1.05

IIR
Array 1.00 1.29 1.29

Pointer 1.00 1.00 1.00

LATNRM
Array 1.39 1.03 1.33

Pointer 1.31 1.13 1.39

LMSFIR
Array 1.00 1.00 1.00

Pointer 1.03 1.00 1.03

MULT
Array 2.33 1.07 2.33

Pointer 1.17 1.23 1.16

Avg
Array 1.33 1.15 1.37

Pointer 1.09 1.14 1.19

VII. RELATED WORK

Speculative Dynamic Vectorization is not a much

extended topic in literature. There have only been a few

proposals like Speculative Dynamic Vectorization [20] and

Dynamic Vectorization in Trace Processors [26]. None of

them is in the context of HW/SW co-designed processors.

A. Pajuelo et al. [20] proposed to speculatively vectorize

the instruction stream in the hardware for superscalar

architectures. Several hardware structures are added to support

speculative dynamic vectorization, which might not be a

power efficient solution, especially in out-of-order superscalar

0,9

0,95

1

1,05

1,1

1,15

1,2

1,25

1,3

1,35

4
1

0
.b

w
a

v
e

s

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

6
.c

a
c

tu
sA

D
M

4
4

4
.n

a
m

d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

a
lc

u
li

x

4
5

9
.G

e
m

sF
D

T
D

4
7

0
.l

b
m

4
8

2
.s

p
h

in
x

3

b
re

a
k

a
b

le

c
o

n
ti

n
u

o
u

s

d
e

fo
rm

a
b

le

e
x

p
lo

si
o

n
s

h
ig

h
sp

e
e

d

p
e

ri
o

d
ic

ra
g

d
o

ll

S
P

E
C

F
P

2
0

0
6

P
h

y
si

c
sb

e
n

c
h

SPECFP2006 Physicsbench Avg

R
e

la
ti

v
e

 P
e

rf
ro

m
a

n
ce

GCC

TOL

GCC + TOL

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4
1

0
.b

w
a

v
e

s

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

6
.c

a
ct

u
sA

D
M

4
4

4
.n

a
m

d

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

a
lc

u
li

x

4
5

9
.G

e
m

sF
D

T
D

4
7

0
.l

b
m

4
8

2
.s

p
h

in
x3

b
re

a
ka

b
le

c
o

n
ti

n
u

o
u

s

d
e

fo
rm

a
b

le

e
xp

lo
si

o
n

s

h
ig

h
sp

e
e

d

p
e

ri
o

d
ic

ra
g

d
o

ll

SP
E

C
F

P
2

0
0

6

P
h

y
si

c
sb

e
n

ch

SPECFP2006 Physicsbench Avg

D
y

n
a

m
ic

 I
n

st
ru

ct
io

n
 P

e
rc

e
n

ta
g

e

Floating Point Interger

processors where power consumption is already a big issue.

They report, more than half of the speculative work is unless

due to mispredictions, whereas the rate of speculation failure

is negligible in our case. S. Vajapeyam et al. [26] builds a

large logical instruction window and converts repetitive

dynamic instructions from different iterations of a loop into
vector form. The whole loop is vectorized if all iterations of

the loop have the same control flow.

Liquid SIMD [8] decouples the SIMD accelerator

implementation from the instruction set of the processor by

compiler support and a hardware based dynamic translator.

Similarly, Vapor SIMD [19] provides a just-in-time

compilation solution for targeting different SIMD

architectures. Thus, both the solutions eliminate the problem

of binary compatibility and software migration. However,

both need compiler changes and recompilation. J. Shin et al.

[24] extended the SLP in the presence of control flow. They

execute both paths of an “if statement” as a vector instruction
and then choose the correct result. Our solution, however,

requires the execution of only the frequently executed path.

VIII. CONCLUSION

This paper proposed to assist the static compiler

vectorization with a complementary dynamic vectorization.

Static vectorization applies complex and time consuming loop

transformations at compile time to vectorize a loop.

Subsequently at runtime, dynamic vectorization extracts

vectorization opportunities missed by static vectorizer due to

conservative memory disambiguation analysis and limited

vectorization scope. Furthermore, the paper proposed a
vectorization algorithm that speculatively reorders ambiguous

memory references to facilitate vectorization. The hardware,

using the existing speculation and recovery support, checks

for any memory dependence violation and takes corrective

action in that case.

Our experimental results show that the combined static

and dynamic vectorization improves the performance twice

compared to static vectorization alone for SPECFP2006.

Furthermore, we show that the proposed dynamic

vectorization performs as good for pointer based applications

as for the array based ones. However, GCC vectorization loses

significant opportunities when source code utilizes pointers.
Moreover, the overhead of runtime vectorization is only 0.6%.

ACKNOWLDGMENTS

This work is partially supported by the Generalitat de

Catalunya under grant 2009SGR-1250, the Spanish Ministry

of Education and Science under grant TIN 2010-18368, and

Intel Corporation. Rakesh Kumar is supported by an FPI-UPC

research grant.

REFERENCES
[1] Standard Performance Evaluation Corporation. SPEC CPU2006

Benchmarks. URL http://www.spec.org/cpu2006/.

[2] Intel Corporation, Intel
®
 64 and IA-32 Architectures Software

Developer´s Manual, Volume 1-3.

[3] UTDSP Benchmarks: www.eecg.toronto.edu/~corinna/

[4] “The Intel® Xeon Phi™ Coprocessor”, :

http://www.intel.com/content/www/us/en/high-performance-computing/
high-performance-xeon-phi-coprocessor-brief.html

[5] P.D´Arcy and S. Beach, StarCore SC140: A New DSP Architecture for

Portable Devices. In Wireless Symposium. Motorola, Sept. 1999.

[6] M. Baron. Cortex-A8: High speed, low power. Microprocessor

Report,11(14):1–6, 2005.

[7] A. J. C. Bik et al. Automatic intra-register vectorization for the Intel
architecture. International Journal of Paral-lel Programming, 30(2):65–

98, April 2002

[8] N. Clark et al. Liquid SIMD: Abstracting SIMD Hardware using
Lightweight Dynamic Mapping. In Proceedings of the 2007 IEEE 13th

International Symposium on High Performance Computer Architecture
(HPCA '07), 216-227

[9] K. Diefendorff, P.K. Dubey, R. Hochsprung, H. Scale. AltiVec

extension to PowerPC accelerates media processing, IEEE Micro, ,
vol.20, no.2, pp.85-95, Mar/Apr 2000

[10] J. C. Dehnert et al. The transmeta code morphing™ software: using

speculation, recovery, and adaptive retranslation to address real-life
challenges. In Proceedings of CGO '03, pages15-24.

[11] B. Guo et al. Selective Runtime Memory Disambiguation in a Dynamic

Binary Translator, In Proceedings of the 15th international conference
on Compiler Construction (CC'06), pages 65-79.

[12] J. Holewinski et al. Dynamic trace-based analysis of vectorization
potential of applications. In Proceedings of the 33rd ACM SIGPLAN

conference on Programming Language Design and Implementation
(PLDI '12), pages 371-382.

[13] J. A. Kahle et al. Introduction to the Cell Multiprocessor. In IBM

Journal of Research and Development, 49(4), pages 589–604, July 2005

[14] S. Larsen et al. Exploiting superword level parallelism with multimedia
instruction sets. In Proceedings of the ACM SIGPLAN 2000 conference

on Programming language design and implementation (PLDI '00).

[15] Ho-Seop Kim et al. Hardware Support for Control Transfers in Code
Caches. In Proceedings of the 36th annual IEEE/ACM International

Symposium on Microarchitecture (MICRO 36). 253-.

[16] R. Lee. Subword Parallelism with MAX-2. IEEE Micro, 16(4):51-59,
Aug 1996.

[17] S. Maleki et al. An Evaluation of Vectorizing Compilers. In Proceedings

of the 2011 International Conference on Parallel Architectures and
Compilation Techniques (PACT '11), pages 372-382.

[18] D. Naishlos. Autovectorization in GCC. In The 2004 GCC Developers’

Summit, pages 105–118,2004.

[19] D. Nuzman et al.Vapor SIMD: Auto-vectorize once, run everywhere. In

Proceedings of the 9th Annual IEEE/ACM International Symposium on
Code Generation and Optimization (CGO '11). USA, 151-160.

[20] A. Pajuelo, A. Gonzalez, and M. Valero. 2002. Speculative dynamic

vectorization. In Proceedings of the 29th annual international
symposium on Computer architecture (ISCA '02), pages 271-280.

[21] D. Pavlou et al. DARCO: Infrastructure for Research on HW/SW co-

designed Virtual Machines. In Proceedings of the 4th Workshop on
Architectural and Microarchitectural Support for Binary Translation

(AMAS-BT'11), held in conjuction with ISCA-38.

[22] G. Ren, P. Wu, D. Padua. An Empirical Study On the Vectorization of
Multimedia Applications for Multimedia Extensions. In Proceedings of

the 19th IEEE International Parallel and Distributed Processing
Symposium (IPDPS'05) Volume 01 (IPDPS '05), Vol. 1, 04-08 2005

[23] S. S. Paul et al. BOA: Targeting multi-gigahertz with binary translation.

In Proc. of the 1999 Workshop on Binary Translation, IEEE Computer
Society Technical Committee on Computer Architecture Newsletter.

[24] J. Shin et al. Superword-Level Parallelism in the Presence of Control
Flow. In Proceedings of the international symposium on Code

generation and optimization (CGO '05). 165-175.

[25] M. Sporny, G. Carper, and J. Turner. The Playstation 2 Linux Kit
Handbook, 2002.

[26] S. Vajapeyam et al. Dynamic vectorization: a mechanism for exploiting

far-flung ILP in ordinary programs. In Proceedings of the 26th annual
International Symposium on Computer architecture (ISCA '99)16-27.

[27] T. Y. Yeh et al. Parallax: An architecture for real-time physics. In

Proceedings of the 34th annual international symposium on Computer
architecture (ISCA '07), pages 232-243.

