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Abstract—Compiler based static vectorization is used widely 

to extract data level parallelism from computation intensive 

applications. Static vectorization is very effective in vectorizing 

traditional array based applications. However, compilers 

inability to reorder ambiguous memory references severely limits 

vectorization opportunities, especially in pointer rich 

applications. HW/SW co-designed processors provide an 

excellent opportunity to optimize the applications at runtime. 

The availability of dynamic application behavior at runtime will 

help in capturing vectorization opportunities generally missed by 

the compilers.  

This paper proposes to complement the static vectorization 

with a speculative dynamic vectorizer in a HW/SW co-design 

processor. We present a speculative dynamic vectorization 

algorithm that speculatively reorders ambiguous memory 

references to uncover vectorization opportunities. The hardware 

checks for any memory dependence violation due to speculative 

vectorization and takes corrective action in case of violation. Our 

experiments show that the combined (static + dynamic) 

vectorization approach provides 2x performance benefit 

compared to the static vectorization alone, for SPECFP2006. 

Moreover, dynamic vectorization scheme is as effective in 

vectorization of pointer-based applications as for the array-based 

ones, whereas compilers lose significant vectorization 

opportunities in pointer-based applications. 

Keywords— HW/SW Co-designed processor, Vectorization, 

Speculation, Dynamic optimizations  

I. INTRODUCTION 

Single Instruction Multiple Data (SIMD) accelerators 

form an integral part of modern microprocessors. These can be 

found in processors from different computing domains like 

general purpose processors [2] [9] [16], Digital Signal 

Processors [5], gaming consoles [13] [25] as well as 

embedded architectures [6]. SIMD accelerators are tailored to 

exploit data level parallelism from modern multimedia, 

scientific and throughput computing applications. Since these 

accelerators perform the same operation on multiple pieces of 

data, they just require duplicated functional units and a very 

simple control mechanism. Due to this simplicity, SIMD 
accelerators grow in size with each new generation. For 

example, Intel´s MMX [2] had vector length of 64-bits, which 

was increased to 128-bits in SSE extensions [2]. Intel´s recent 

SIMD extension AVX [2] and Intel´s Xeon Phi [4] supports 

256-bit and 512-bit vector operations respectively.   
Code generation for SIMD extensions has always been 

challenging. In the early days, programmers used to target 
these extensions mainly using in-line assembly or specialized 
library calls. Then, automatic generation of SIMD instructions 

(auto-vectorization) was introduced in compilers [7][18], 
which borrowed their methodology from vector compilers. 
These compilers target loops for generating code for SIMD 
accelerators. Later, S. Larsen et al. [14]  introduced Superword 
Level Parallelism (SLP) in which they target basic blocks 
instead of whole loops for vectorization. These static 
approaches to vectorization are effective for traditional 
applications where memory is referenced through explicit array 
accesses, whereas modern applications make extensive use of 
pointers. Due to this, disambiguation of a pair of memory 
accesses becomes difficult at compile time. Since memory 
operations form the foundation of vectorization, current static 
approaches are limited in extracting SIMD parallelism.  

In this paper, we propose to have dynamic vectorization as 
a complimentary optimization to the compiler based static 
vectorization.  It is important to note that we do not propose to 
eliminate static vectorization altogether because there are 
several complex and time consuming transformations which 
are not straightforward to apply at runtime and are too costly 
like loop distribution, loop interchange, loop peeling, memory 
layout change, algorithm substitution etc. However, static 
vectorization alone fails to capture significant vectorization 
opportunities due to conservative pointer disambiguation 
analysis. To handle these cases we propose to have a 
speculative dynamic vectorizer which can speculatively reorder 
ambiguous memory references to uncover vectorization 
opportunities. Moreover, in the absence of loops, the scope of 
vectorization for static vectorization is a single basic block. We 
propose to vectorize bigger code regions which include 
multiple basic blocks and can be created at runtime following 
the biased direction of branches. 

Furthermore, we propose a speculative dynamic 
vectorization algorithm which can be implemented in the 
software layer of a HW/SW co-designed processor1. The 
proposed algorithm speculatively reorders and vectorizes 
memory operations. During execution, the hardware checks for 
any memory dependence violations caused by speculative 
vectorization. If any violation is detected, the hardware rolls 
back to a previously saved check-point and executes a non-
speculative version of the code. The hardware support required 
for speculative execution is already provided by co-designed 
processors like Transmeta Crusoe [10], BOA [23] etc. 
Therefore, no additional hardware support is needed from 
speculative vectorization point of view. This hardware support 
is also one of the reasons for choosing HW/SW co-designed 
processors over dynamic binary optimizers in our proposals. 

Moreover, in the absence of static compiler vectorization, 

our algorithm can work as a standalone vectorizer also. 

1 
Section II BACKGROUND provides the background about HW/SW Co-

designed Processors. 



Therefore, the legacy code which was not compiled for any 

SIMD accelerator can be vectorized using the proposed 

algorithm. The co-designed nature of the processor makes the 

vectorization portable. As a result, the algorithm can be 

modified to transparently target a different SIMD accelerator. 

It is important to note that the proposed algorithm does not 
require any compiler or operating system 

support/modification. The main contributions of this paper can 

be summarized as: 

• Proposes a complementary dynamic vectorization to 

the static compiler vectorization. 

• Proposes to increase the vectorization scope utilizing 

the dynamically discovered control flow: biased 

branch directions and dynamic loop trip counts. 

• A runtime speculative vectorization algorithm :  

o that is equally good in vectorizing array and 

pointer based applications. 
o that is able to vectorize legacy code. 

• Experimental evaluation of the proposed algorithm 

and it’s comparison with GCC vectorizer.  

The rest of the paper is organized as follows: Section II 
provides a background on HW/SW co-designed processors. 
Section III briefly provides the motivation for the work 
presented in this paper. Section IV describes the proposed 
algorithm with an example. Section V explains the speculation 
and recovery mechanism. Evaluation of the algorithm using 
SPECFP2006, Physicsbench and UTDSP applications is 
presented in Section VI. Section VII presents the related work 
and Section VIII concludes. 

II. BACKGROUND 

HW/SW Co-designed processors [10][23] employ a 

software layer that resides between the hardware and the 

operating system. This software layer allows host and guest 

ISAs to be completely different, by translating the guest ISA 

instructions to the host ISA dynamically. We define host ISA 

as the ISA which is implemented in the hardware, whereas, 

guest ISA is the one for which applications are compiled. The 

basic idea behind these processors is to have a simple host 
ISA to reduce power consumption and complexity.  

The software layer translates the guest ISA instructions to 

the host ISA in multiple phases. Generally, in the first phase, 

guest ISA instructions are interpreted. In the rest of the phases, 

guest code in translated and stored in a code cache, after 

applying several dynamic optimizations, for faster execution. 

The number of translation phases and optimizations in each 

phase are implementation dependent. 
Hardware support is needed for efficient and correct 

emulation of the guest ISA instructions. Memory speculation is 
the key to several optimizations performed by HW/SW co-
designed processors. To ensure the correctness of memory 
speculation, hardware support is provided to detect speculation 
failure and recover from it. Furthermore, hardware support is 
necessary for providing precise exceptions and detecting self-
modifying code. Moreover, overhead of indirect branches and 
function returns can be reduced by having some hardware 
support [15].  

III. MOTIVATION 

Traditional compile time loop vectorization is effective 
for applications involving explicit array accesses since 

memory dependence analysis are relatively easy. Significant 

performance gains have been reported using compiler 

vectorization in the past[7][14]. However, one of the major 

obstacles in vectorization at compile time is memory 

disambiguation and dependence testing. J. Holewinski et. al. 

[12] showed that static vectorization fails to extract significant 

vectorization opportunities especially in pointer-based 

applications. Furthermore, S. Maleki et al. [17] showed that 

the modern compilers, including Intel ICC, IBM XLC and 

GNU GCC, are limited in vectorizing modern applications.  

Extensive use of pointers and pointer arithmetic in these 
applications complicate memory disambiguation and 

dependence testing. Even though research shows that a pair of 

memory accesses rarely alias until and unless aliasing is 

obvious [11], compilers generate conservative code to ensure 

correctness which limits vectorization opportunities [22]. For 

example, Figure 1a shows a loop that performs pointer 

arithmetic. During compilation, if the compiler cannot prove 

that the two pointers always reference different memory 

locations, this loop cannot be vectorized.  
 

void example(double *a, double *b) 
{ 
    int i; 
    for (i = 0; i < NUM_ITR; i++) 
        a[i] += b[i] * CONST; 
} 

a) An example loop with pointers 

loop: I0 ld_64 v2, M [r2 + r1 * 8] 
 I1 mulsd v3, v2, v1 
 I2 ld_64 v4, M [r3 + r1 * 8] 
 I3 addsd v5, v4, v3 
 I4 st_64 v5, M [r3 + r1 * 8] 
 I5 add r4, r1, 1 

 I6 ld_64 v6, M [r2 + r4 * 8] 
 I7 mulsd v7, v6, v1 
 I8 ld_64 v8, M [r3 + r4 * 8] 
 I9 addsd xmm0, v8, v7 
 I10 st_64 xmm0, M [r3 + r4 * 8] 
 I11 add r1, r4, 1 
 I12 cmp  r1, r0 
 I13 jne loop 

 
b) Unrolled lower level representation 

 I0 Pack2  v1, v1, v1 
loop: I1 ld_128_spec v2, M [r2 + r1 * 8] 
 I2 mulpd  v3, v2, v1 
 I3 ld_128  v4, M [r3 + r1 * 8] 
 I4 addpd  v5, v4, v3 

 I5 st_128_spec v5, M [r3 + r1 * 8] 
 I6 add  r1, r1, 2 
 I7 cmp  r1, r0 
 I8 jne  loop 

I9 Unpack  xmm0, v5 
 

c) Speculatively vectorized version 

Figure 1. An Example Loop with pointer arithmetic. 

2  
Pack/Unpack instructions are explained in Section IV B) Vectorization.



As stated before, a recent approach to vectorization, SLP 

[14], performs vectorization at basic block level. Whereas 

traditional loop vectorizers vectorize either whole loop or 

nothing, SLP may vectorize portions of a loop if the whole 

loop is not vectorizable. SLP starts by identifying adjacent 

memory accesses and then follows their def-use and use-def 
chains. Figure 1b shows low level code for the loop of Figure 

1a after unrolling it once. In this case even though I0 and I6 

are adjacent memory references, they cannot be packed by 

SLP since I4 and I6 may alias. Thus, memory dependences 

affect both traditional loop vectorizers as well as modern SLP.  

One possible solution that compilers may provide is to 

generate two versions of the loop: one without vectorization 

and another vectorized with a runtime test to check for 

aliasing. However, this solution is not optimal because: 1) 

runtime test has to be executed every time before executing 

the loop, thus resulting in performance loss. Moreover, as the 

number of arrays to be checked for aliasing increases the 
number of checks to be performed also increases.  
2) Having multiple versions of the loop increases the static 
code footprint of the application, which results in higher 
instruction cache size requirements.  
 Another way of vectorizing the example loop is through 
“__restrict annotation”. However, it requires source code 
modification which is not always possible e.g. unavailability of 
the source code or any other reason. In contrast, the proposed 
mechanism does not require any source code modification. 
Moreover, the “__restrict annotation” can not help in 
vectorization of the loops with complicated memory 
dependence. We choose a simple loop in this example to easily 
explain the proposed vectorization algorithm in Section IV D. 

HW/SW Co-designed processors provide an excellent 
opportunity to handle these cases: instead of generating 
multiple versions, a single speculatively vectorized version can 
be generated by the software layer and the hardware can be 
tailored to execute the vectorized code efficiently and safely. 
The proposed algorithm speculatively reorders memory 
operations to expose vectorization opportunities. For the 
example code of Figure 1b, our algorithm speculatively 
assumes that I4 and I6 will never alias and reorders them to 
pack I0 and I6 together, as shown in Figure 1c. Moreover, due 
to the speculative reordering, I1 is converted to a speculative 
load and I5 to a speculative store (in vectorized code). If during 
the execution it turns out that I1 and I5 access overlapping 
memory locations, the hardware will detect this condition and 
will take corrective measures. In this example, by vectorizing 
speculatively we are able to vectorize the whole loop, whereas 
loop vectorization and SLP could not find vectorization 
opportunities. 

Therefore, having two complementary vectorizing schemes 
helps to get the best of both the worlds. Static vectorization 
applies more complex and time consuming loop 
transformations whereas dynamic vectorization speculatively 
vectorizes ambiguous memory references and dependent 
operations. 

IV. VECTORIZATION ALGORITHM 

This section provides the details of the proposed 
vectorization scheme. Before explaining the vectorization 

algorithm itself, first we explain binary 

translation/optimization steps of our (a typical) HW/SW co-

designed processor. It helps us understand the context in 

which vectorization is done.  
The software layer of our co-designed processor is called 

Translation Optimization Layer (TOL). TOL operates in three 
translation modes for generating host code from guest x86 
code: Interpretation Mode (IM), Basic Block Translation Mode 
(BBM) and Superblock Translation Mode (SBM). 
Vectorization is done in SBM, which is the most aggressive 
translation/optimization level, after applying several standard 
compiler optimizations. 

A. Pre-Vectorization Steps 

Before starting with vectorization we create a superblock, 
apply standard compiler optimizations on the superblock and 
generate a Data Dependence Graph (DDG). Each of these steps 
is explained below: 

1) Superblock Creation:  TOL starts by interpreting guest 

x86 instruction stream in IM. When a basic block is executed 

more than a predetermined number of times, TOL switches to 

BBM. In this mode, the whole basic block is translated and 

stored in the code cache and the rest of the executions of this 

basic block are done from the code cache. Moreover, branch 

profiling information for direction and target of branches is 

also collected. Once the execution of a basic block exceeds 

another predetermined threshold, TOL creates a bigger 

optimization region, called superblock, using the branch 

profiling information collected during BBM.  

A superblock generally includes multiple basic blocks 

following the biased direction of branches. Moreover, 

branches inside the superblocks are converted to “asserts” so 

that a superblock can be treated as a single-entry, single-exit 

sequence of instructions. This gives the freedom to reorder 

and vectorize the instructions from multiple basic blocks. 

“Asserts” are similar to branches in the sense that both checks 

a condition. Branches determine the next instruction to be 

executed based on the condition, however asserts have no such 

effect. If the condition is true assert does nothing. However, if 

the condition evaluates to false, the assert “fails” and the 

execution is restarted from a previously saved checkpoint in 

IM. Furthermore, while creating a superblock, if a loop is 

detected, it is unrolled. Currently, we unroll loops with a 

single basic block. 

2) Pre-optimizations: A pre-optimization phase applies 

several conventional compiler optimizations in order to 

remove the dead code and improve the quality of the code. 

First of all, the superblock is converted into Static Single 

Assignment (SSA) form to remove anti and output 

dependences. Then, the optimizations Constant Propagation, 

Copy Propagation, Constant Folding, Common Sub-

expression Elimination and Dead Code Elimination are 

applied.  
The next step is to generate the Data Dependence Graph 

(DDG). During DDG creation, we perform memory 

disambiguation analysis and consecutiveness analysis. If 



memory disambiguation analysis cannot prove that a pair of 

memory operations will never/always alias, it is marked as 

“may alias”. In case of reordering, the original memory 

instructions are converted to speculative memory operations. 

Similarly, consecutiveness analysis finds adjacent memory 

accesses and marks them for vectorization. Apart from this, 
Redundant Load Elimination and Store Forwarding are also 

applied during DDG phase so that redundant memory 

operations are removed before vectorization. 

B. Vectorization 

The vectorizer packs together a number of independent 

scalar instructions, which perform the same operation, and 
replaces them with one vector instruction; the number of 

scalar instructions packed depends on the data-types of scalar 

instructions. Therefore, vectorization reduces dynamic 

instruction count and improves performance. Before 

describing the algorithm, we define a set of conditions that a 

pair of instructions must satisfy to be included in the same 

pack: 

• The instructions must perform the same operation. 

• The instructions must be independent. 

• The instructions must not be in another pack. 

• If the instructions are load/store, they must be 
accessing consecutive memory locations. 

 Vectorization starts by marking all the instructions which 

are candidates for vectorization. Moreover, we mark First 

Load and First Store instructions. First Load/Store instructions 

are those for which there are no other loads/stores from/to 

adjacently previous memory locations. For example, if there is 

a 64-bit load instruction IL that loads from a memory location 

[M] and there is no 64-bit load instruction that loads from 

address [M – 8], we call IL First Load. 

Vectorization begins by packing consecutive stores, 

starting from a First Store. The decision of starting with stores 
instead of loads is based on the observation that a given kind 

of operation always has the same number of predecessors, e.g. 

all the additions always have two predecessors, whereas the 

number of successors may vary depending on how many 

instructions consume the result. Consequently, following a 

bottom-up approach results in a more structured tree traversal 

than a top-down approach. 

Once a pack of stores is created, their predecessors are 

packed, before packing other stores, if they satisfy the packing 

conditions. Moreover if the last store in the pack has a next 

adjacent store, it is marked as First Store so that a new pack 

can start from it.  
Once all the stores are packed and their predecessor/ 

successors chains have been followed, we check for remaining 

load instructions that satisfy the packing conditions and pack 

them in the same way as stores.  

While traversing the predecessor/successor chains, if we 

find out that the predecessors of a pack cannot be vectorized, a 

Pack instruction is generated. This Pack instruction collects 

the results of all the predecessors into a single vector register 

and feeds the current pack. Similarly if all the successors of a 

pack cannot be vectorized, an Unpack instruction is generated. 

This Unpack instruction distributes the result of the pack to 

the scalar successor instructions.  

Moreover, Pack instructions are needed if a pack contains 

an instruction whose input is live-in of the superblock. 

Similarly, Unpack instructions are needed to put the results 

from a pack to the architectural registers which are live-outs of 
the superblock.  

C. Static vs Dynamic Vectorization 

Loops are the basic program structures that the 

vectorizers target for extracting parallelism through 

vectorization. Several loop transformations are sometimes 

needed to make a loop vectorizable. The transformation like 
loop distribution, loop interchange, loop peeling, node 

splitting, memory layout change, algorithm substitution etc are 

generally applied to make a loop vectorizable. These time 

consuming transformations are better suited at compile time 

than at runtime. However, compile time vectorization suffers 

from several limitation like: 1) limited vectorization 

opportunities due to conservative memory disambiguation 

analysis, 2) scope of vectorization is limited to basic blocks if 

the loops cannot be unrolled e.g. due to complex control flow 

and 3) legacy code cannot be vectorized.  

The proposed speculative dynamic vectorization gets rid of 
all these limitations. The proposed algorithm relaxes the 

restrictions on memory disambiguation by speculatively 

reordering/vectorizing the ambiguous memory references. 

Since the scope of vectorization for the proposed algorithm is 

a superblock, it crosses the basic block boundaries to vectorize 

instructions from multiple basic blocks. Moreover, for the 

loops, where the number of iterations are not known statically, 

it is difficult to decide the unroll factor at compile time. The 

availability of dynamic application behavior, at runtime, 

allows to detect the loop unroll factor dynamically. 

Furthermore, since the dynamic vectorization is applied at 

runtime on the program binary and not at the source code 
level, the legacy code can also be vectorized. Therefore, the 

combination of static and dynamic vectorization extracts the 

maximum vectorization opportunities. 

D. Working Through an Example 

Figure 2a shows the DDG for the example code of Figure 1b. 

Since the loop is unrolled once and there is no loop carried 
dependences, assumed speculatively, the two trees are 

completely separated from each other. For the sake of 

simplicity, we do not show loop control code in this figure. 

Also, pairs of ambiguous memory reference instructions like 

I4 and I6 are considered independent speculatively. As our 

algorithm begins with consecutive stores, the stores I4 and I10 

are packed together as shown in Figure 2b. Moreover, the new 

store instruction is speculative one and I6 is also converted to 

speculative load. Following the predecessor tree, we see that 

I3 and I9 satisfy the packing conditions and vectorize them. 

Notice here that I9 writes to a live-out architectural register. 
As a result, we have to generate an Unpack instruction to write 

the result to the live-out register. This is shown in Figure 2c. 
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f)  

Figure 2. Example for vectorization of the code of Figure 1b. a). Shows the DDG for the loop which is unrolled once. We don´t show loop control code for the 

sake of simplicity. Since two iterations are completely independent we have two completely separated trees. Two arrows coming in to I1 and I7 represents live-in 

and arrow going out of I9 represents live-out of the superblock. Also, speculatively, we assume there is no dependence between the memory instructions until its 

obvious  b) Shows the state of DDG after vectorizing consecutive stores, also, the new store instruction is speculative one. c) Then, we follow the predecessor 

chain and pack addsd instructions. Since I9 writes to an architectural register, we need to unpack the results and write to the architectural register. d) Packs two 

mulsd instructions and since one of the inputs to both of these instructions is a live-in, a Pack instruction is also generated to pack the inputs in a single vector 

register. e) and f) pack remaining load instructions and f) Shows the final state. 

 

Traversing up the tree we vectorize multiplication 

instructions I1 and I7. One of the inputs of the multiplication 

instructions is a live-in to the superblock. Hence, we generate 

a Pack instruction to put the live-in values in a vector register 

as shown in Figure 2d. As explained earlier, before packing 
the other predecessors of additions (I3 and I9), we traverse the 

tree up for the predecessors of I1 and I7. We discover that the 

loads I0 and I6 are independent and consecutive, thus, they are 

packed next. Also, the new vector load instruction is 

speculative since I6 was speculative, Figure 2e. Finally, 

Figure 2f shows the second inputs of additions (I3 and I9): the 

two load instructions (I2 and I8) are also vectorized. Pack and 

Unpack instructions generated to read and write architectural 
registers in this example can be moved outside the loop as 

loop invariant code, as shown in Figure 1c. This way, we are 

able to vectorize the whole loop. 

I0:   

ld_64

I1:  

mulsd

I2:   

ld_64

I3:  

addsd

I4:   

st_64

I6:   

ld_64

I7:  

mulsd

I8:   

ld_64

I9:  

addsd

I10: 

st_64

I0:   

ld_64

I1:  

mulsd

I2:   

ld_64

I3:  

addsd

I6:   

ld_64_s

I7:  

mulsd

I8:   

ld_64

I9:  

addsd

I4 I10: 

st_128_s

I0:   

ld_64

I1:  

mulsd

I2:   

ld_64

I6:   

ld_64_s

I7:  

mulsd

I8:   

ld_64

I3 I9: 

addpd

I4 I10: 

st_128_s
unpack

I0:    

ld_64

I1 I7: 

mulpd

I2:    

ld_64

I6:    

ld_64_s

I8:    

ld_64

I3 I9: 

addpd

I4  I10: 

st_128_s
unpack

pack

I1 I7: 

mulpd

I2:       

ld_64

I0 I6: 

ld_128_s

I8:       

ld_64

I3 I9: 

addpd

I4 I10: 

st_128_s
unpack

pack

I2: 

mulpd

I1: 

ld_128_s

I3: 

ld_128

I4: 

addpd

I6: 

st_128_s

I5: 

unpack

I0:   

pack



V. SPECULATION AND RECOVERY 

Memory speculation is a key optimization to achieve 
performance in HW/SW co-designed systems. For example, 

Transmeta Crusoe [10] reports that, on average, suppressing 

memory reordering causes 10% and 33% performance loss in 

operating system boots and user applications respectively. 

Since, memory operations play an important role in 

vectorization, by freely reordering them, consecutive memory 

references can be packed together. This not only helps in 

utilizing memory bandwidth but also in vectorization of their 

dependent arithmetic operations. Furthermore, it is important 

to note that HW/SW co-designed processors like Transmeta 

Crusoe, BOA etc provide hardware support for speculation 

and recovery even though they do not have any dynamic 
vectorization scheme. Therefore, we assume this hardware 

support to be present in our baseline architecture. Hence, from 

the vectorization point of view, we do not need to add any 

new hardware support for speculation and recovery. This 

section briefly explains how the speculation and recovery 

mechanism works in HW/SW co-designed processors.  

A combination of software and hardware mechanisms is 

used to detect speculation failure and subsequent recovery. 

The software labels each load/store instruction with a 

sequence number in the original program order. If a pair of 

load-store or store-store instructions, that may alias, is 
reordered, the original load/store instructions are converted to 

“speculative load/store” instructions. 

The hardware has two sets of architectural registers: a 

working set and a shadow copy. Before starting the execution 

of speculated code, a copy of the working set is saved into the 

shadow registers (Saving a checkpoint). During the execution, 

only the working copy of the registers is updated. In the case 

of speculation failure, the register state is restored by copying 

the contents of shadow registers to the working copy. 

Restoring the memory state is a little more complicated since 

it is not practical to have two copies of the whole memory 

state. To track the changes in the memory state, a store buffer 
is used. During the normal execution, store instructions write 

to the store buffer instead of directly writing to the memory. In 

the case of speculation failure, the contents of the store buffer 

are discarded whereas they are forwarded to the memory if the 

speculated code executes successfully.  

To detect a speculation failure, the hardware maintains a 

table to record address and size of all the memory locations 

accessed by “speculative load/store” instructions in the current 

superblock. Moreover, the sequence number of “speculative 

load/store” instructions is also recorded in the table. During 

the execution, if the hardware detects: 

• that a speculative memory instruction with higher 

sequence number is executed before another 

speculative memory instruction with lower sequence 

number and 

• they access overlapping memory locations, 

an exception in raised. In this case, the contents of the store 

buffer are flushed; register values from the shadow registers 

are copied to the working set; (This has the effect of restoring 

the earlier saved checkpoint) and the execution is restarted in 

Interpretation Mode. On the other hand, in case of successful 

execution of speculated code, values in the store buffer are 

forwarded to the memory and the contents of the shadow 

registers are discarded. 

 
Seq Num                  Seq Num    
      1        ld_64     v1, M[x] 2    st_64_s     v2, M[y] 

      2        st_64     v2, M[y] 1    ld_64_s     v1, M[x] 
 

a) Orignal Code Sequenc) b) Reordered Code Sequence 

 

PC -->   1    ld_64_s     v1, M[x] 

 

Seq Num Address Size 

2 y 8 

 

c)  Hardware Table State 

Figure 3.  Speculation Failure Detection Example. 

 

Figure 3 shows an example of speculation failure 

detection mechanism. Figure 3a shows the original code 
sequence with two memory references where the relation 

between the two memory addresses is unknown. The two 

instructions are labeled in the program order. Figure 3b shows 

the reordered code sequence. The instructions maintain their 

sequence number. However, they are converted to speculated 

instructions to inform the hardware to check them for 

speculation failure.  Figure 3c shows the hardware table state 

just before executing the speculated load instruction. The 

program counter points to the current instructions and the 

table has entry for the executed speculated store instruction. 

At this point, since the instruction with higher sequence 

number(2) has been executed before the instruction with 
smaller sequence number(1), if the address of the current 

speculated load instruction overlaps with the address of the 

speculated store instruction, the hardware will generate an 

exception and will go the recovery mode. 

If the rate of speculation failures exceeds a predetermined 

limit in a particular superblock, it is recreated without 

reordering ambiguous memory references. 

With this speculation and recovery support available in 

the baseline architecture, speculatively vectorized code can be 

executed correctly without any additional hardware support. 

VI. PERFORMANCE EVALUATION 

A. Experimental Framework 

To evaluate the proposals, we use DARCO [21], which is 

an infrastructure for evaluating HW/SW co-designed virtual 

machines. DARCO executes guest x86 binary on a PowerPC-

like RISC host architecture. Since DARCO emulates floating 

point code in software, we extended the infrastructure to add 

floating point scalar and vector operations. The proposed 

algorithm was implemented in TOL to support vectorization.  

In our experiments, we assume that the host architecture 

supports a vector width of 128-bits. Moreover, we consider  



 
Figure 4 Percentage of Dynamic Instructions Eliminated by GCC, TOL and GCC + TOL Vectorizations 

only floating point operations for vectorization (because most 

SIMD optimizations tend to focus on them) and no integer 

operation is vectorized. For this reason, we show only floating 

point instructions in the results presented in this section. 

For the speculation and recovery, as discussed in Section 

V, the hardware maintains a table where it stores the sequence 

number, direction and size of speculative load/store 

instructions. We implement this table with 1K entries. Optimal 

duration/position to take a checkpoint is a different research 

problem and is out of scope of this paper. For simplicity we 

take checkpoint in the beginning of every superblock. We 
implement the store buffer with 1K entries. Moreover to avoid 

overflow of the store buffer we restrict the number of 

load/store instructions to be 1K in a superblock. Since we take 

checkpoint in the beginning of every superblock and a 

superblock cannot have more than 1K load/store, the store 

buffer can never overflow. 

B. Benchmarks 

To measure the success of the proposals we use a set 

applications from SPECFP2006[1] and Physicsbench[27] 

benchmarks suites. Furthermore, to measure the effectiveness 

of the proposed algorithm in vectorizing pointer based 

applications we use kernels from UTDSP benchmark suite [3]. 

UTDSP benchmark suite contains array and pointer based 

version of several signal processing kernels. Both versions 

provide identical functionality, the only difference being the 

use of arrays or pointers to traverse the data structures. 

SPECFP2006 benchmarks operate on double-precision, 
whereas Physicsbench and UTDSP operate on single-precision 

floating point values.  

All the benchmarks are executed till completion. 

SPECFP2006 benchmarks are executed using “train” input. 

Moreover, choose only the benchmarks which have less than 

150 billion dynamic instructions to keep the execution time 

manageable. The benchmarks are compiled with gcc version 

4.5.3, optimization flags “-O3 –ffast -math   -fomit-frame-pointer” and 

“-mfpmath=sse   -msse3” vectorization flag. To disable 

vectorization “-fno-tree-vectorize” flag is used. 

C. FP Dynamic Instruction Elimination 

This section presents the percentage of dynamic 

instructions eliminated by 1) only GCC, 2) only TOL and 3) 

GCC+TOL vectorizations, first for SPECFP2006 and 

Physicsbench benchmarks suites and then for UTDSP Kernels. 
GCC and TOL represent static and dynamic vectorization 

respectively. For TOL vectorization the input binary is 

compiled by GCC but not vectorized. Also, TOL vectorization 

results show its effectiveness in vectorizing legacy code, since 

input binary is not vectorized for any SIMD accelerator. For 

GCC+TOL case, the input binary to TOL is already vectorized 

by GCC. The results of this case show the vectorization 

opportunities missed by GCC but captured by TOL. 

1) Benchmarks: For SPECFP2006, on average, the 

combined GCC+TOL approach eliminates approximately 

twice the number of instructions than only the static GCC 

vectorization as shows in Figure 4. GCC+TOL vectorization 

outperforms GCC for all the SPECFP2006 benchmarks except 

for 436.cactusADM and 459.GemsFDTD. GCC completely 

vectorizes these benchmarks and hence TOL does not get any 

further vectorization opportunities. Therefore, instruction 

elimination is same for GCC and GCC+TOL. It is also 

important to note that on average, dynamic TOL vectorization 

itself outperforms static GCC vectorization.  Moreover, the 

only benchmarks where GCC outperforms TOL are again 

436.cactusADM and 459.GemsFDTD. The effectiveness of 

TOL vectorization, to some extent, depends on the quality of 

the input binary. For example, for 436.cactusADM the input 

binary to TOL contains GCC unrolled version of the hottest 

loop. This GCC unrolled loop does not fit in a single 

superblock due to TOL´s restriction on the maximum number 

of instructions in a superblock. Therefore, TOL vectorizer 

could not vectorize it as good as GCC. For 459.GemsFDTD 

GCC generates significant spill-fill code (to store/retrieve 

temporary values to/from memory) in the frequently executed 

loops. This spill-fill code affects TOL´s ability to vectorize 

this benchmark. 
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GCC could not vectorize Physicsbench mainly due to the 

presence of complex control flow in the most frequently 

executed loops.  TOL also is unable to unroll these loops; 

however, it extracts significant vectorization opportunities 

through superblock vectorization. Since GCC fails to vectorize 

anything, GCC+TOL and TOL vectorizations both eliminate 
20% of dynamic instruction stream. 

2) Kernels: Table I shows the vectorization results for 

UTDSP kernels.  As the table shows GCC vectorizes the array 

based version of FFT, LATNRM and Matrix Multiplication 

(MULT) but for the pointer based version it is able to 

vectorize only LATNRM. On the contrary, performance of 

TOL is same for the array and pointer based versions for all 

the kernels except for IIR. Pointer based version of IIR 

contains control flow inside the innermost loop and hence 

TOL fails to vectorize it. Furthermore, once again a 

combination of static and dynamic vectorization, GCC+TOL, 

provides the best solution. 

TABLE I.  PERCENTAGE OF DYNAMIC INSTRUCTIONS ELIMINATED BY 

GCC, TOL AND GCC+TOL VECTORIZATIONS 

Benchmark Type GCC TOL GCC + TOL 

FFT 
Array 43.28% 52.70% 43.28% 

Pointer 0.00% 49.87% 49.87% 

FIR 
Array 0.00% 0.00% 0.00% 

Pointer -0.08% 0.00% -0.08% 

IIR 
Array 0.00% 32.52% 32.52% 

Pointer 0.00% 0.00% 0.00% 

LATNRM 
Array 23.48% 7.38% 20.44% 

Pointer 19.43% 17.85% 27.76% 

LMSFIR 
Array 0.00% 0.00% 0.00% 

Pointer 0.00% 0.00% 0.00% 

MULT 
Array 64.72% 17.62% 64.72% 

Pointer 0.00% 17.62% 17.62% 

Avg 
Array 21.91% 18.37% 26.83% 

Pointer 3.23% 14.22% 15.86% 

 

For the array based version, TOL vectorizer outperforms 
GCC in vectorizing IIR. GCC is unable to resolve loop carried 

dependences, whereas speculative vectorization helps TOL to 

provide an instruction reduction of 32%. On the other hand, 

GCC surpasses TOL vectorization for LATNRM and Matrix 

Multiplication (MULT). In the current version of TOL 

vectorizer, reductions are not implemented. Both LATNRM 

and MULT have reductions, which TOL fails to vectorize. 

Moreover, MULT has non-unit stride memory accesses, since 

only one dimension of the matrix (either row or column) can 

be accessed in the unit-stride manner. Compliers apply 

optimizations like “memory layout change”, “data coping” etc 

to convert non-unit stride accesses to unit-stride. However, 
these optimizations are not directly applicable at runtime. This 

adds to the loss of vectorization opportunities for TOL 

vectorizer.  

None of the vectorization schemes is able to extract 

benefit for FIR and LMSFIR, mainly because of the presence 

of control flow inside the innermost loop. Moreover, in these 

benchmarks, the number of independent instructions in the 

basic blocks (and even in superblocks) is not enough to enable 

vectorization. It is also interesting to note that TOL eliminates 

53% of instructions from array version of FFT, whereas 

GCC+TOL eliminate only 43% (as does GCC alone). This is 

because the input to TOL is completely vectorized by GCC 

and TOL does not find any vectorization opportunities, 

therefore the instruction reductions stays at 43% in 

GCC+TOL case.  

D. Vectorization Overhead 

Vectorization overhead is the fraction of dynamic 

instruction stream that corresponds to the vectorization of 

superblocks by TOL. A high vectorization overhead might 

offset the benefits of the vectorization. We calculate the 

vectorization overhead as: 
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Our experimental results show that, on average, the 

vectorization overhead is less than 0.6% of the dynamic 
instruction stream, for all the benchmark suites. Hence, the 

dynamic vectorization overhead is negligible compared to its 

benefits. 

E. Effectiveness of Memory Speculation 

One of the main factors in the success of the proposed 

vectorization scheme is the memory speculation.  However, it 
might backfire if there are lots of speculation failures. A 

speculation failure results in executing un-optimized (and 

without TOL vectorization) version of the code and if the rate 

of speculation failure exceeds a predetermined threshold, 

recreating the superblock without speculation. However, our 

results show that, on average, we execute more than 99% of 

the dynamic code in speculation mode. It reflects the fact that 

number of speculation failures, and hence the overhead 

associated with it, is negligible. 

F. Performance 

For the performance analysis, we model a simple in-order 

processor, in congruence with the simple hardware design 

philosophy of the co-designed processors, with issue width of 

two. Microarchitectural parameters for the modeled processor 

are given in Table II. For the performance analysis both the 

floating point and integer instructions are considered, even 

though TOL vectorizes only the floating point code. 

TABLE II.  PROCESSOR MICROARCHITECTURAL PARAMETERS 

Parameter Value 

L1 I-cache 
64KB, 4-way set associative, 64-byte 

line, 1 cycle hit, LRU 

L1 D-cache 
64KB, 4-way set associative, 64-byte 

line, 1 cycle hit, LRU 

Unified L2 cache 
512KB, 8-way set associative, 64-byte 

line, 6 cycle hit, LRU 

Scalar Functional Units (latency) 
2 simple int(1), 2 int mul/div (3/10) 

2 simple FP(2), 2 FP mul/div (4/20) 

Vector Functional Units (latency) 
1 simple int(1), 1 int mul/div (3/10) 

1 simple FP(2), 1 FP mul/div (4/20) 

Registers 128-Integer, 128-Vector, 32-FP 

Main memory Lat 128 Cycles 

 



 

 
Figure 5 Execution speed for GCC, TOL and GCC + TOL vectorized code relative to unvectorized code. Higher is better.

Figure 5 shows the performance of the vectorized code 

using the different vectorization schemes relative to the 

unvectorized code, for SPECFP2006 and Physicsbench. The 
performance results in the figure conform to the results of 

Figure 4 for dynamic instruction elimination. For 

SPECFP2006, GCC+TOL vectorization provides twice the 

performance benefit than GCC alone (10% compares to 5% of 

GCC alone). Also, TOL vectorization alone provides better 

performance than GCC alone. It is interesting to note that for 

410.bwaves and 433.milc GCC vectorized code gets a 

slowdown even though Figure 4 shows dynamic FP 

instruction elimination. The slowdown comes because of the 

integer code. GCC adds more integer code than it vectorizes, 

hence suffers a slowdown. Moreover, for these benchmarks 
GCC+TOL provides worse performance than TOL alone 

because GCC+TOL vectorizes GCC vectorized input with 

extra integer code whereas TOL vectorizes unvectorized code. 

 
Figure 6 Integer and Floating Point Instruction Distribution in SPECFP2006 

and Physicsbench 

 As GCC fails to vectorize anything in Physicsbench it does 

not show any performance improvements. However, similar to 

the results of Figure 4, GCC+TOL and TOL vectorizations 
provide similar performance benefits for Physicsbench. 

An interesting thing to note is that in Figure 4 GCC+TOL 

vectorization, on average, eliminates 20% of the dynamic 

instruction stream for both SPECFP2006 and Physicsbench. 

However, SPECFP2006 gets more speed up than 

Physicsbench as shown in Figure 5. This is because 

percentage of floating point code is more in SPECFP2006 

than in Physicsbench as shown in Figure 6. 
Table III shows the speedup for UTDSP kernels. These 

results also conform to the results of Table I. For the pointer 

based version of the kernels GCC loses significant 

performance compared to the array based version. However, 

performance is not affected a lot for TOL vectorizer. 

Furthermore, the combination of static and dynamic 

vectorizations, GCC+TOL, is able to extract maximum 

performance out of the kernels. 

TABLE III.  EXECUTION SPEEDUP RELATIVE TO UNVECTORIZED CODE. 
HIGHER THE BETTER.  

Benchmark Type GCC TOL GCC + TOL 

FFT 
Array 1.26 1.50 1.26 

Pointer 1.00 1.50 1.50 

FIR 
Array 1.00 1.00 1.00 

Pointer 1.05 1.00 1.05 

IIR 
Array 1.00 1.29 1.29 

Pointer 1.00 1.00 1.00 

LATNRM 
Array 1.39 1.03 1.33 

Pointer 1.31 1.13 1.39 

LMSFIR 
Array 1.00 1.00 1.00 

Pointer 1.03 1.00 1.03 

MULT 
Array 2.33 1.07 2.33 

Pointer 1.17 1.23 1.16 

Avg 
Array 1.33 1.15 1.37 

Pointer 1.09 1.14 1.19 
 

VII. RELATED WORK 

Speculative Dynamic Vectorization is not a much 

extended topic in literature. There have only been a few 

proposals like Speculative Dynamic Vectorization [20] and 

Dynamic Vectorization in Trace Processors [26]. None of 

them is in the context of HW/SW co-designed processors. 

A. Pajuelo et al. [20] proposed to speculatively vectorize 

the instruction stream in the hardware for superscalar 

architectures. Several hardware structures are added to support 

speculative dynamic vectorization, which might not be a 

power efficient solution, especially in out-of-order superscalar 
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processors where power consumption is already a big issue. 

They report, more than half of the speculative work is unless 

due to mispredictions, whereas the rate of speculation failure 

is negligible in our case. S. Vajapeyam et al. [26] builds a 

large logical instruction window and converts repetitive 

dynamic instructions from different iterations of a loop into 
vector form. The whole loop is vectorized if all iterations of 

the loop have the same control flow. 

Liquid SIMD [8] decouples the SIMD accelerator 

implementation from the instruction set of the processor by 

compiler support and a hardware based dynamic translator. 

Similarly, Vapor SIMD [19] provides a just-in-time 

compilation solution for targeting different SIMD 

architectures. Thus, both the solutions eliminate the problem 

of binary compatibility and software migration. However, 

both need compiler changes and recompilation. J. Shin et al. 

[24] extended the SLP in the presence of control flow. They 

execute both paths of an “if statement” as a vector instruction 
and then choose the correct result. Our solution, however, 

requires the execution of only the frequently executed path. 

VIII. CONCLUSION 

This paper proposed to assist the static compiler 

vectorization with a complementary dynamic vectorization. 

Static vectorization applies complex and time consuming loop 

transformations at compile time to vectorize a loop. 

Subsequently at runtime, dynamic vectorization extracts 

vectorization opportunities missed by static vectorizer due to 

conservative memory disambiguation analysis and limited 

vectorization scope. Furthermore, the paper proposed a 
vectorization algorithm that speculatively reorders ambiguous 

memory references to facilitate vectorization. The hardware, 

using the existing speculation and recovery support, checks 

for any memory dependence violation and takes corrective 

action in that case.  

Our experimental results show that the combined static 

and dynamic vectorization improves the performance twice 

compared to static vectorization alone for SPECFP2006. 

Furthermore, we show that the proposed dynamic 

vectorization performs as good for pointer based applications 

as for the array based ones. However, GCC vectorization loses 

significant opportunities when source code utilizes pointers. 
Moreover, the overhead of runtime vectorization is only 0.6%. 
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