
Quantitative Characterization of the Software Layer
of a HW/SW Co-Designed Processor

José Cano∗, Rakesh Kumar∗, Aleksandar Brankovic†, Demos Pavlou‡,
Kyriakos Stavrou‡, Enric Gibert§, Alejandro Martı́nez¶ and Antonio González‖

∗University of Edinburgh, UK †Intel ‡11pets
§Pharmacelera ¶ARM ‖Universitat Politècnica de Catalunya, Spain

Abstract—HW/SW co-designed processors currently have a re-
newed interest due to their capability to boost performance with-
out running into the power and complexity walls. By employing
a software layer that performs dynamic binary translation and
applies aggressive optimizations through exploiting the runtime
application behavior, these hybrid architectures provide better
performance/watt. However, a poorly designed software layer can
result in significant translation/optimization overheads that may
offset its benefits. This work presents a detailed characterization
of the software layer of a HW/SW co-designed processor using
a variety of benchmark suites. We observe that the performance
of the software layer is very sensitive to the characteristics of
the emulated application with a variance of more than 50%. We
also show that the interaction between the software layer and
the emulated application, while sharing the microarchitectural
resources, can have 0-20% impact on performance. Finally, we
identify some key elements which should be further investigated
to reduce the observed variations in performance. The paper
provides critical insights to improve the software layer design.

I. INTRODUCTION

Hardware/Software (HW/SW) co-designed processors are
hybrid architectures that couple a software layer to the mi-
croarchitectural implementation of a processor. The software
layer resides between the hardware and the operating system
(Figure 1b), and dynamically translates and optimizes binaries
from a guest Instruction Set Architecture (ISA) to the host ISA
— we refer to the software layer as Translation Optimization
Layer (TOL). These processors have some important advan-
tages over traditional hardware-only systems (Figure 1a) such
as the ability to support multiple guest ISAs, the exploitation
of dynamic information at runtime (which can potentially
improve performance and/or power consumption), etc.

These hybrid architectures have gained a great momentum
over the past few years. Earlier examples include Transmeta
products Crusoe [1], [2] and Efficeon [3], as well as research
projects from IBM like DAISY [4] and BOA [5]. Currently,
there is a renewed interest from both industry [6], [7] and
academia [8], [9], [10], [11], [12], [13]. The fundamental idea
behind all these systems is to have a simple host ISA to achieve
design simplicity and energy efficiency. But at the same time,
boost the performance by aggressively optimizing the guest
ISA binaries through the software layer.

This work was done when: José Cano, Rakesh Kumar, and Aleksandar
Brankovic were with UPC; Demos Pavlou, Kyriakos Stavrou, Enric Gibert,
Alejandro Martı́nez, and Antonio González were with Intel labs.

Operating 
System

Execution Hardware

Libraries

Application Programs

ISA

Operating 
System

Translation Optimization 
Layer (Software)

Libraries

Application Programs

Execution Hardware

Guest ISA

Host ISA

(a)

Operating 
System

Execution Hardware

Libraries

Application Programs

ISA

Operating 
System

Translation Optimization 
Layer (Software)

Libraries

Application Programs

Execution Hardware

Guest ISA

Host ISA

(b)

Fig. 1: HW/SW interface in processors: a) Conventional; b) Co-designed.

Although dynamic binary translation can also be performed
in hardware, as in x86 processors, a software implementation
provides several important benefits. For example, it allows
to translate bigger code regions (or blocks of instructions) at
once, thus increasing the scope of optimizations. Furthermore,
the processor could be upgraded in the field by introducing
new optimizations or fixing bugs in the software layer, which
is not possible with the hardware implementation. As software
is easier to develop and validate than hardware, validation and
verification cost/time are also reduced. Finally, the co-design
implementation reduces hardware complexity.

However, if the software layer is not carefully designed, it
can also generate significant overheads that might compromise
its benefits. We think it is of vital importance to understand
those overheads. Nevertheless, to the best of our knowledge,
no data have been made public that study in detail the
characteristics of the software layer of a HW/SW co-designed
processor, its interaction with the application, and how its
execution profile is related to the application it emulates.

In this paper, we quantitatively characterize the software
layer of a HW/SW co-designed processor using a variety of
benchmark suites. The analysis provided shows the challenges
that any co-design processor needs to address in order to be
efficient. We make three important contributions:

• We study the performance of TOL with respect to the
emulated application. We show that the particular char-
acteristics of the application like the size of the static
code, the dynamic/static instructions ratio, or the amount
of indirect branches can affect TOL performance (and
thus its overhead) with a variance of more than 50%.

JOX
Texto escrito a máquina

JOX
Texto escrito a máquina

JOX
Texto escrito a máquina

JOX
Texto escrito a máquina
To appear in 2016 IEEE International Symposium on Workload Characterization (IISWC)

JOX
Texto escrito a máquina

JOX
Texto escrito a máquina

JOX
Texto escrito a máquina

JOX
Texto escrito a máquina



x86 Binary

Commands Path Commands Path

Timing 
Simulator

Process 
Tracker

Data and 
Instruction Path

Data and 
Instruction Path

x86 Component Co-design Component

Controller

x86 
Functional 
Emulator

Host ISA
Functional 
Emulator

x86 OS
Translation Optimization 
Layer (TOL)

Emulated x86 
application 

Memory Space

Authoritative x86 
Register State

Authoritative x86 
application 

Memory Space

State Checker

Emulated x86 
Register State

Fig. 2: DARCO main components.

• We examine how the execution time is affected by the in-
teraction of TOL and the emulated application on shared
microarchitectural resources. Due to this interaction, the
performance can be penalized by up to 20%.

• We identify four key elements that should be further ana-
lyzed to improve TOL performance: data cache, instruc-
tion scheduling, instructions cache, and indirect branches.

II. EXPERIMENTAL METHODOLOGY

In this section we briefly describe the infrastructure used
to perform our characterization study, and our evaluation
methodology along with the benchmarks suites analyzed.

A. Infrastructure description

We used DARCO [14], a simulation infrastructure specif-
ically designed to enable research for HW/SW co-designed
processors. DARCO models a HW/SW co-designed processor
that executes guest x86 binaries on a RISC host architecture.
The infrastructure consists of four main components (Figure
2): the x86 Component, the Co-design Component, the Timing
Simulator, and the Controller.

• x86 Component: provides an x86 full-system functional
emulator on top of which an unmodified operating system
is executed. This component keeps the authoritative ar-
chitectural state. Its main role is to permit co-simulation
[15], a technique very useful for debugging which checks
that the state of the translations/optimizations is correct
according to the guest ISA semantics.

• Co-design Component: provides the host processor
functional model. It executes the Translation Optimiza-
tion Layer (TOL) that translates and optimizes the x86
instruction stream to simple RISC instructions.

• Timing Simulator: models a configurable RISC in-order
processor. It receives the dynamic instruction stream from
the co-design component and provides detailed execution
statistics. The timing simulator is able to distinguish
the instructions corresponding to the emulation of the
x86 application from those corresponding to TOL. This
feature enables studying the interaction between the x86
component and the co-design component at the microar-
chitectural level (Section III-D).

x86 eip

In 
Code 

$?

Interpret

BB translate

Store in Code $

Chain

Execute from Code $

Create SB

Optimize SB> BBth

From Code $ 

Yes

Yes

No

No

Fig. 3: Translation Optimization Layer (TOL) execution flow. The left path
is followed in IM, the middle in BBM and the right in SBM.

• Controller: is the main interface of DARCO with the
user. It provides full control over the execution of the
application, as well as debugging utilities.

Note that DARCO models only user-level code and skips
system calls and exception handling routines. However, this
has minor implications on the experimental results, mainly
due to the small contribution of non user-level code to the
dynamic code stream for the benchmarks studied. Next, we
explain in deeper detail the two components that are relevant
for this paper, that is, TOL and the timing simulator.

1) Translation Optimization Layer (TOL): Software layer
that translates the guest code to the host ISA. It is equipped
with an interpreter, a translator, a profiler and a dynamic opti-
mizer that applies a plethora of optimizations to the translated
regions. TOL has three different execution modes, interpre-
tation mode (IM), basic block translation mode (BBM), and
superblock and optimization mode (SBM). Figure 3 shows the
high level view of the execution flow of TOL.

TOL starts by interpreting the x86 instructions. When
a branch target executes more than a predefined threshold
(IM/BBth), TOL switches to BBM, the particular basic block
(BB) is translated and the translation is stored in the code
cache. Subsequent executions of this BB are done from
the code cache while gathering profiling information for the
direction of the branch and its target, through instrumentation.
When a BB executes more times than another predefined
threshold (BB/SBth), it is considered hot and TOL switches to
SBM. During this mode, the control flow profiling information
that was collected during the previous executions is used by
the optimizer in order to create a superblock (SB) with the
starting point being the BB that triggered SBM. The SB passes
through several optimizations (copy/constant propagation, con-
stant folding, common subexpression elimination, dead code
elimination, register allocation and instruction scheduling) and
it is stored in the code cache. Subsequent executions of the
SB are done from the code cache.

2) Timing Simulator: Models a simple in-order processor,
following the philosophy of having a host machine as simple



Prefetcher 
TLB L1 

TLB L2 

Front End 
 

AC IF DEC 

L1-I$ L2$ L1-D$ 

Back End IQ 

Main 
Memory 

ISSUE RR EXE WB 

BP 

Fig. 4: Host processor model pipeline overview, composed of: Front-End,
Instruction Queue (IQ), and Back-End.

as possible. The modeled pipeline decouples the Front-End
from the Back-End using an Instruction Queue (Figure 4). The
Front-End reads (Address Calculation (AC) stage, Instruction
Fetch (IF) stage), decodes (DEC stage), and stores the instruc-
tions in the Instruction Queue (IQ). Furthermore, it is equipped
with a Gshare branch predictor (BP) and a Branch Target
Buffer (BTB). The Back-End issues and executes instructions
from IQ. Issuing is done using a scoreboard that keeps track
of the availability of the source registers. During the Register
Read (RR) stage, the instructions read their operands from the
bypass or the register file, which is logically divided between
TOL and the application (32 registers are only accessible by
TOL and 32 only by the translated application code) in order
to reduce transition overheads. Cache accesses are performed
during the EXE stage, which includes the address calculation.
Also during the EXE stage, the processor executes the ALU
operations. The last stage is the Write Back (WB). Notice that
branch mispredictions are detected and handled in the EXE
stage, leading to a misprediction penalty of 6 cycles.

The modeled processor has two levels of cache in the mem-
ory hierarchy. The first level is divided between instructions
(L1-I$) and data (L1-D$), whereas the second level (L2) and
main memory are shared. The translation lookaside buffer
(TLB) has a two level architecture and exists only for data,
since TOL works with physical addresses. Furthermore, notice
that the Back-End is equipped with a stride prefetcher.

The processor configuration used across all the experiments
is shown in Table I. The issue width of the processor is 2,
with both pipes being symmetric. Each pipe has one simple
(1 cycle latency) and one complex (2 cycles latency) integer
execution units, and one simple (2 cycles latency) and one
complex (5 cycles latency) floating point execution units.

B. Evaluation methodology

When evaluating a dynamic binary translator it is of key
importance to distinguish between the start-up and the steady
state. A non-strict definition of the start-up phase is that it
is the amount of time spent interpreting and translating guest
code until most of the code is translated and the frequency of
translation is low. Similarly, a loose definition of the steady
state is that it is the execution thereafter, with the majority of

TABLE I: Host processor microarchitectutal parameters.

Component Parameter Value
General Issue width 2
Instruction queue Size 16
Brach predictor Size of history register 12
L1 I-Cache / Size 32KB
L1 D-Cache Block size/Associativity 64B/4

Replacement policy PLRU
Hit latency 1

Stride prefetcher Number of entries 256
L2 U-Cache Size 512KB

Block size/Associativity 128B/8
Replacement policy PLRU
Hit latency 16

Main memory Hit latency 128
L1 TLB Entries 64/8 way

Replacement policy PLRU
Hit latency 1

L2 TLB Entries 256/8 way
Replacement policy PLRU
Hit latency 16

the guest code being executed from the code cache — note
that this is the expected behavior for the common case. Note
that there will always be applications either with big code
footprint and low repetition or with very small number of
dynamic instructions that will never reach the steady state.

The transitional effects are of major importance for HW/SW
co-designed processors, as a “heavy” interpreter or translator
can lead to major slowdowns. For example, if on average the
interpreter consumes 1% of the execution time, by getting a
10 times slower interpreter will result in 10% slowdown. Our
experience shows that without careful design a 10x slowdown
could easily be the case. Throughout this work, we pay
special attention on including these transitional effects in the
simulation period. To guarantee this, the simulation period
starts from the first instruction of each application. At the same
time, in order to avoid these effects being the dominant factor
in this simulation period, we simulate a very large number of
instructions, 4B (billion) x86 instructions. However, some of
our benchmarks have fewer than 4B instructions and as such
they run to completion.

The applications used for our studies consist of SPEC
CPU2006 [16], Mediabench [17] and Physicsbench [18]. The
combination of the three suites provides a rich spectrum of
applications for the characterization of TOL and the analysis
of the interaction between TOL and the various applications.

III. QUANTITATIVE TOL CHARACTERIZATION

This section presents a detailed quantitative characterization
of the dynamic behavior of TOL. First, we provide information
regarding the static and dynamic distribution of the x86 code
in the different execution modes of TOL. We then discuss the
distribution of the execution time among the various compo-
nents of TOL and the application code, providing insights on
the factors that determine the characteristics of the breakdown.
Next, we analyze the performance characteristics of TOL.



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

3
.x

a
la

n
cb

m
k

9
9

8
.s

p
e

cr
a

n
d

4
1

0
.b

w
a

v
e

s

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l

e
sl

ie
3

d

4
4

4
.n

a
m

d

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

9
.G

e
m

sF
D

T
D

4
5

3
.p

o
v
ra

y

4
5

4
.c

a
lc

u
li

x

4
7

0
.l

b
m

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

9
9

9
.s

p
e

cr
a

n
d

1
0

0
.n

o
v
is

_
b

re
a

k
a

b
le

1
0

1
.n

o
v
is

_
co

n
ti

n
u

o
u

s

1
0

2
.n

o
v
is

_
d

e
fo

rm
a

b
le

1
0

3
.n

o
v

is
_

e
v

e
ry

th
in

g

1
0

4
.n

o
v

is
_

e
xp

lo
si

o
n

s

1
0

5
.n

o
v
is

_
h

ig
h

sp
e

e
d

1
0

6
.n

o
v
is

_
p

e
ri

o
d

ic

1
0

7
.n

o
v

is
_

ra
g

d
o

ll

0
0

0
.c

jp
e

g

0
0

1
.d

jp
e

g

0
0

2
.h

2
6

3
d

e
c

0
0

3
.h

2
6

3
e

n
c

0
0

4
.h

2
6

4
d

e
c

0
0

5
.h

2
6

4
e

n
c

0
0

6
.j

p
g

2
0

0
0

d
e

c

0
0

7
.j

p
g

2
0

0
0

e
n

c

0
0

8
.m

p
e

g
2

d
e

c

0
0

9
.m

p
e

g
2

e
n

c

0
1

0
.m

p
e

g
4

d
e

c

0
1

1
.m

p
e

g
4

e
n

c

S
P

E
C

 C
P

U
2

0
0

6
 I

N
T

S
P

E
C

 C
P

U
2

0
0

6
 F

P

P
h

y
si

cs
b

e
n

ch

M
e

d
ia

b
e

n
ch

INT FP

SPEC CPU2006 Physicsbench Mediabench Averages

P
e

rc
e

n
ta

g
e

 o
f 

st
a

ti
c 

x
8

6
 i

n
st

ru
ct

io
n

s

IM BBM SBM

(a)

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

8
.s

je
n

g

4
6

2
.li

b
q

u
an

tu
m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
ar

4
8

3
.x

al
an

cb
m

k

9
9

8
.s

p
e

cr
an

d

4
1

0
.b

w
av

e
s

4
3

3
.m

ilc

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

ac
s

4
3

6
.c

ac
tu

sA
D

M

4
3

7
.le

sl
ie

3
d

4
4

4
.n

am
d

4
4

7
.d

e
al

II

4
5

0
.s

o
p

le
x

4
5

9
.G

e
m

sF
D

TD

4
5

3
.p

o
vr

ay

4
5

4
.c

al
cu

lix

4
7

0
.lb

m

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

9
9

9
.s

p
e

cr
an

d

1
0

0
.n

o
vi

s_
b

re
ak

ab
le

1
0

1
.n

o
vi

s_
co

n
ti

n
u

o
u

s

1
0

2
.n

o
vi

s_
d

e
fo

rm
ab

le

1
0

3
.n

o
vi

s_
e

ve
ry

th
in

g

1
0

4
.n

o
vi

s_
e

xp
lo

si
o

n
s

1
0

5
.n

o
vi

s_
h

ig
h

sp
e

e
d

1
0

6
.n

o
vi

s_
p

e
ri

o
d

ic

1
0

7
.n

o
vi

s_
ra

gd
o

ll

0
0

0
.c

jp
e

g

0
0

1
.d

jp
e

g

0
0

2
.h

2
6

3
d

e
c

0
0

3
.h

2
6

3
e

n
c

0
0

4
.h

2
6

4
d

e
c

0
0

5
.h

2
6

4
e

n
c

0
0

6
.j

p
g2

0
0

0
d

e
c

0
0

7
.j

p
g2

0
0

0
e

n
c

0
0

8
.m

p
e

g2
d

e
c

0
0

9
.m

p
e

g2
e

n
c

0
1

0
.m

p
e

g4
d

e
c

0
1

1
.m

p
e

g4
e

n
c

SP
EC

 C
P

U
2

0
0

6
 IN

T

SP
EC

 C
P

U
2

0
0

6
 F

P

P
h

ys
ic

sb
en

ch

M
e

d
ia

b
e

n
ch

INT FP

SPEC CPU2006 Physicsbench Mediabench Averages

P
e

rc
e

n
ta

ge
 o

f 
d

yn
a

m
ic

 x
8

6
 in

st
ru

ct
io

n
s

(b)

Fig. 5: x86 code distribution in IM, BBM, SBM: a) Static code; b) dynamic code.

Finally, we examine how the emulated application and TOL
interact on the shared resources of the processor and analyze
the performance implications of this interaction.

A. Guest code distribution

We study the static and dynamic x86 instruction distribution
in the three execution modes of TOL: IM, BM, and SBM. The
objective of this analysis is twofold: i) knowing the amount of
guest code that will be optimized, as it will affect the overhead
generated by TOL; ii) knowing the repetition degree of the
optimized code, as it will clarify if the optimization effort can
be compensated or not. We assume the following promotion
thresholds (analysis not shown due to space limitations):
IM/BBth = 5; BB/SBth = 10K.

Figure 5a depicts the static x86 code distribution among
the three execution modes. On average, 36% of the static x86
code is not promoted from IM since it is not executed more
than 5 times. Moreover, 50% of the code stays is BBM while
only 14% is promoted to the SBM. The dynamic x86 code
distribution is depicted in Figure 5b. The experimental data
show that even with a threshold as high as 10K repetitions,
97% of the dynamic instruction stream comes from the highest
level of optimization (SBM), which represents only 14% of the
static code. This result motivates using a staged compilation
approach, where cold code is filtered and high overhead

optimizations with high return of investment are applied only
to small fraction of the static code.

In addition, we can extract other interesting insights from
Figure 5. First, there is little correlation between the static and
the dynamic distribution of the code. For example, 001.djpeg
has 30% of its static code in BBM while the dynamic contri-
bution of that code is 16.24%. However, 462.libquantum has
almost the same static code in BBM (32%) but the dynamic
contribution of that code is only 0.1%. The explanation behind
this behavior is the repetition factor of the static code, which
is strictly application dependent and defined by the high level
semantics of the application’s algorithm and its input.

The second observation is actually a warning. Although IM
and BBM have rather low contribution to dynamic code, TOL
still needs to provide a lightweight interpreter/translator that
generates good quality code, otherwise they will affect signif-
icantly the execution time. A costly interpreter will exacerbate
the impact of the small amount of interpreted instructions
in execution time. Moreover, from our experience, BBM
simple optimizations, like dead code elimination and constant
propagation, should be applied. Avoiding those optimizations
will impact significantly the distribution of the execution time.

B. Execution time distribution
In HW/SW co-designed processors, the execution time is

mainly divided into two categories: i) time spent executing



1

10

100

1000

10000

100000

1000000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

3
.x

a
la

n
cb

m
k

9
9

8
.s

p
e

cr
a

n
d

4
1

0
.b

w
a

v
e

s

4
3

3
.m

il
c

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l

e
sl

ie
3

d

4
4

4
.n

a
m

d

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
v

ra
y

4
5

4
.c

a
lc

u
li

x

4
5

9
.G

e
m

sF
D

T
D

4
7

0
.l

b
m

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

9
9

9
.s

p
e

cr
a

n
d

1
0

0
.n

o
v
is

_
b

re
a

k
a

b
le

1
0

1
.n

o
v
is

_
co

n
ti

n
u

o
u

s

1
0

2
.n

o
v

is
_

d
e

fo
rm

a
b

le

1
0

3
.n

o
v

is
_

e
v

e
ry

th
in

g

1
0

4
.n

o
v
is

_
e

xp
lo

si
o

n
s

1
0

5
.n

o
v

is
_

h
ig

h
sp

e
e

d

1
0

6
.n

o
v

is
_

p
e

ri
o

d
ic

1
0

7
.n

o
v

is
_

ra
g

d
o

ll

0
0

0
.c

jp
e

g

0
0

1
.d

jp
e

g

0
0

2
.h

2
6

3
d

e
c

0
0

3
.h

2
6

3
e

n
c

0
0

4
.h

2
6

4
d

e
c

0
0

5
.h

2
6

4
e

n
c

0
0

6
.j

p
g

2
0

0
0

d
e

c

0
0

7
.j

p
g

2
0

0
0

e
n

c

0
0

8
.m

p
e

g
2

d
e

c

0
0

9
.m

p
e

g
2

e
n

c

0
1

0
.m

p
e

g
4

d
e

c

0
1

1
.m

p
e

g
4

e
n

c

S
P

E
C

 C
P

U
2

0
0

6
 I

N
T

S
P

E
C

 C
P

U
2

0
0

6
 F

P

P
h

ys
ic

s

M
e

d
ia

INT FP

SPEC CPU2006 Physicsbench Mediabench Averages

Lo
g

a
ri

th
m

ic
 s

ca
le

P
e

rc
e

n
ta

g
e

 o
f 

e
xe

cu
ti

o
n

 t
im

e

Overhead Application Dynamic/Static instructions ratio SBM invocations

Fig. 6: Breakdown of execution time into TOL and the application.

code corresponding to the guest application, which allows to
make forward progress; ii) overhead introduced by TOL while
interpreting/translating/optimizing guest instructions, manag-
ing the code cache, and performing bookkeeping activities
such as collecting profiling information. Note that although
with interpretation the application makes forward progress, we
consider the interpreter as overhead due to the high cost for
emulating one x86 instruction. This assumption has very small
impact on the results. Derived from Figures 6 and 7, the global
amount of cycles spent in IM is on average 2-3%.

The execution time breakdown is depicted in Figures 6 and
7, where each bar corresponds to a different benchmark. In
Figure 6 time is divided into TOL and the application —
that is, cycles executing RISC instructions that emulate the
guest x86 application. Figure 7 represents the TOL part in
Figure 6, which is divided into its major components. The
TOL breakdown is as follows (from top to bottom): 1) Code$
lookup: cycles searching for a translation in the code cache;
2) Chaining: cycles connecting BBs or SBs together; 3) SBM:
cycles forming and optimizing SBs; 4) BBM: cycles forming
and optimizing BBs; 5) IM: cycles interpreting; 6) TOL others:
cycles that do not fit in the other categories, e.g. initialization,
entry/exit points, control flow within the main execution loop,
etc. On average, the overall overhead introduced by TOL
in DARCO (Figure 6) is 28% for Mediabench, 22% for
Physicsbench, 22% for SPEC INT, and 12% for SPEC FP.

Applications with high dynamic/static instruction ratio (Fig-
ures 6) have lower TOL overhead. Since there is high repeti-
tion in the code, the overhead introduced by TOL is amortized
better. A characteristic example is 462.libquantum, which has
a ratio of 385K repetitions per instruction. On the other hand,
applications with low code repetition (i.e. low dynamic/static
instructions ratio), like 000.cjpeg and 001.djpeg, tend to spend
relatively more time in the interpreter and, therefore, have high
TOL overhead. Note that 000.cjpeg, 001.djpeg, and 433.milc
have a similar static code footprint of 15K x86 instructions.

However, 000.cjpeg and 001.djpeg have significantly less
dynamic x86 instructions than the 433.milc, which justifies
the big difference of the visible overheads.

Another important factor is the relationship between the ra-
tio of dynamic/static instructions and the promotion threshold.
If the dynamic/static ratio is close to the threshold, then there
is high probability of generating and optimizing multiple SBs
which will not repeat enough times to amortize the overhead
spent for their creation. From the experimental results we can
distinguish two different cases: i) the execution is distributed
across a large number of BBs; and ii) the execution is
concentrated in just a few BBs.

For the first case, consider applications like 002.h263dec
and 007.jpg2000enc from Mediabench. The SBM is invoked
several times, thus creating a large number of superblocks.
Since the repetition factor is close to the SBM invocation
threshold, the optimized code will not be executed enough
times in order to return the investment done by TOL.

For the second case, consider 006.jpeg2000dec. Although its
dynamic/static instruction ratio is close to the threshold, it has
significantly less SBM overhead compared to 007.jpg2000enc.
This is due to the fact that for 006.jpeg2000dec only 96
superblocks are created, whereas for 007.jpg2000enc TOL
created 450 (Figure 6). This is also reflected in Figure 5
which illustrates that 006.jpeg2000dec has most of the dy-
namic execution concentrated in a small number of static
instructions. This particular example clearly shows that the
overhead depends on the repetition of the BBs that already
passed the threshold and not on the overall repetition threshold
of all the BBs of the application.

The complexity of the control flow with respect to branches
(direct or indirect) encountered in the application is also a very
important factor for the introduced overhead. Direct branches
are easy to handle since the target address is fixed. This
allows translations to be easily connected (linking/chaining),
in order to reduce the number of invocations of TOL [19].



1

10

100

1000

10000

100000

1000000

10000000

100000000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

3
.x

a
la

n
cb

m
k

9
9

8
.s

p
e

cr
a

n
d

4
1

0
.b

w
a

ve
s

4
3

3
.m

ilc

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l

e
sl

ie
3

d

4
4

4
.n

a
m

d

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

4
.c

a
lc

u
lix

4
5

9
.G

e
m

sF
D

T
D

4
7

0
.l

b
m

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

9
9

9
.s

p
e

cr
a

n
d

1
0

0
.n

o
vi

s_
b

re
a

ka
b

le

1
0

1
.n

o
vi

s_
co

n
ti

n
u

o
u

s

1
0

2
.n

o
vi

s_
d

e
fo

rm
a

b
le

1
0

3
.n

o
vi

s_
e

ve
ry

th
in

g

1
0

4
.n

o
vi

s_
e

xp
lo

si
o

n
s

1
0

5
.n

o
vi

s_
h

ig
h

sp
e

e
d

1
0

6
.n

o
vi

s_
p

e
ri

o
d

ic

1
0

7
.n

o
vi

s_
ra

g
d

o
ll

0
0

0
.c

jp
e

g

0
0

1
.d

jp
e

g

0
0

2
.h

2
6

3
d

e
c

0
0

3
.h

2
6

3
e

n
c

0
0

4
.h

2
6

4
d

e
c

0
0

5
.h

2
6

4
e

n
c

0
0

6
.j

p
g

2
0

0
0

d
e

c

0
0

7
.j

p
g

2
0

0
0

e
n

c

0
0

8
.m

p
e

g
2

d
e

c

0
0

9
.m

p
e

g
2

e
n

c

0
1

0
.m

p
e

g
4

d
e

c

0
1

1
.m

p
e

g
4

e
n

c

SP
E

C
 C

P
U

2
0

0
6

 I
N

T

SP
E

C
 C

P
U

2
0

0
6

 F
P

P
h

ys
ic

s

M
e

d
ia

INT FP

SPEC CPU2006 Physicsbench Mediabench Averages

Lo
ga

ri
th

m
ic

 s
ca

le

P
e

rc
e

n
ta

g
e

 o
f 

e
xe

cu
ti

o
n

 t
im

e

TOL others IM BBM SBM Chaining Code$ look-up Dynamic x86 indirect branches

Fig. 7: Breakdown of execution time into the main modules of TOL.

As for the indirect branches, they are way more difficult to
handle as their target is determined during their execution.
The calculation only gives the guest target address, but it
is the responsibility of TOL to identify the corresponding
host address by performing a code cache lookup. There is
an abundance of related work characterizing the importance
of handling the indirect branches in an efficient manner [20],
[21], [22]. Currently TOL incorporates the Indirect Branch
Translation Cache (IBTC) [20] but, still, the overhead is in
the order of tens of RISC instructions.

From the experimental results, we can observe that applica-
tions with a high number of indirect branches and returns, like
400.perlbench and 459.GemsFDTD, are impacted significantly
by the overhead introduced by the code cache lookup. The
first time that an x86 indirect branch target is encountered,
the execution transitions to TOL in order to perform a code
cache lookup, so as to determine the corresponding RISC
address that contains the translation of the x86 address (it if
was already translated). The IBTC is then updated with the
correct pair of x86/RISC addresses, and when the same x86
target address is encountered again, the execution can continue
without falling back to TOL. The cost of the transition to TOL
is reflected by the “TOL others” part of the bars.

The code cache lookup functions and the transitions to TOL
are becoming a major source of overhead for applications with
high numbers of x86 indirect branches, e.g. 400.perlbench
(22.7M x86 indirect branches at 4B dynamic x86 instructions),
unlike applications with low amount of indirect branches like
401.bzip2 (1933 x86 indirect branches at 4B dynamic x86
instructions) which is verified by previous work [23].

C. TOL performance characteristics

From the point of view of the host processor, TOL is still
an application, whose input is the guest x86 application being

emulated. In this subsection, we examine the performance
characteristics of TOL while emulating the various workloads
considered. For the experimental results described in this
subsection, we study the execution of TOL in isolation through
ignoring in the timing simulator all the instructions that
correspond to the emulation of the application.

The performance characteristics of TOL are illustrated in
Figure 8. The bars show the RISC instructions per cycle (IPC)
executed by TOL. The data cache miss rate, the instruction
cache miss rate, and the branch misprediction rate are shown
with three types of marks (secondary axis). The most impor-
tant observation from Figure 8 is that the performance of TOL
varies significantly for the different applications. Specifically,
the lowest IPC is 0.85 for 445.gobmk while the highest is
1.48 for 433.milc. While intuitively TOL was expected to have
almost constant performance since it repeats always the same
tasks, our experimental results show that this is not true.

The particular characteristics of each application justify this
performance variation. The static x86 code of the application
is one important contributor. TOL interprets, translates and
optimizes the static code, but the effort to do so is defined by
the instruction mix. For example, generating code for a mov
reg1,reg2 is cheaper than an add reg1,reg2 since the latter also
modifies the x86 EFLAGS. This also justifies the variation
of the branch misprediction rates, since the translator follows
different paths, according to the static instruction translated.

The dynamic characteristics of the x86 code are also of
major importance. As an example consider 401.bzip2 and
403.gcc. We know that 401.bzip2 is simpler than 403.gcc
for TOL since it has smaller static code and high repetition,
resulting in less SBM invocations for optimization (Figure 6).
From the processor’s point of view, this implies less memory
accesses and fewer branches. Moreover, 403.gcc has more x86
indirect branches, therefore TOL incurs higher overhead, due



0%

1%

2%

3%

4%

5%

0.6

0.8

1

1.2

1.4

1.6

4
0

0
.p

e
rl

b
e

n
ch

4
0

1
.b

zi
p

2

4
0

3
.g

cc

4
2

9
.m

cf

4
4

5
.g

o
b

m
k

4
5

8
.s

je
n

g

4
6

2
.l

ib
q

u
a

n
tu

m

4
6

4
.h

2
6

4
re

f

4
7

1
.o

m
n

e
tp

p

4
7

3
.a

st
a

r

4
8

3
.x

a
la

n
cb

m
k

9
9

8
.s

p
e

cr
a

n
d

4
1

0
.b

w
a

ve
s

4
3

3
.m

ilc

4
3

4
.z

e
u

sm
p

4
3

5
.g

ro
m

a
cs

4
3

6
.c

a
ct

u
sA

D
M

4
3

7
.l

e
sl

ie
3

d

4
4

4
.n

a
m

d

4
4

7
.d

e
a

lI
I

4
5

0
.s

o
p

le
x

4
5

3
.p

o
vr

a
y

4
5

4
.c

a
lc

u
lix

4
5

9
.G

e
m

sF
D

T
D

4
7

0
.l

b
m

4
8

1
.w

rf

4
8

2
.s

p
h

in
x3

9
9

9
.s

p
e

cr
a

n
d

1
0

0
.n

o
vi

s_
b

re
a

ka
b

le

1
0

1
.n

o
vi

s_
co

n
ti

n
u

o
u

s

1
0

2
.n

o
vi

s_
d

e
fo

rm
a

b
le

1
0

3
.n

o
vi

s_
e

ve
ry

th
in

g

1
0

4
.n

o
vi

s_
e

xp
lo

si
o

n
s

1
0

5
.n

o
vi

s_
h

ig
h

sp
e

e
d

1
0

6
.n

o
vi

s_
p

e
ri

o
d

ic

1
0

7
.n

o
vi

s_
ra

g
d

o
ll

0
0

0
.c

jp
e

g

0
0

1
.d

jp
e

g

0
0

2
.h

2
6

3
d

e
c

0
0

3
.h

2
6

3
e

n
c

0
0

4
.h

2
6

4
d

e
c

0
0

5
.h

2
6

4
e

n
c

0
0

6
.j

p
g

2
0

0
0

d
e

c

0
0

7
.j

p
g

2
0

0
0

e
n

c

0
0

8
.m

p
e

g
2

d
e

c

0
0

9
.m

p
e

g
2

e
n

c

0
1

0
.m

p
e

g
4

d
e

c

0
1

1
.m

p
e

g
4

e
n

c

SP
E

C
 C

P
U

2
0

0
6

 I
N

T

SP
E

C
 C

P
U

2
0

0
6

 F
P

P
h

ys
ic

s

M
e

d
ia

INT FP

SPEC CPU2006 Physicsbench Mediabench Averages

IP
C

IPC D$ miss rate I$ miss rate branch misprediction rate

Fig. 8: TOL performance characteristics: IPC, D$ and I$ miss rates and branch mispredictions.

to transitions from the application to TOL and additional code
cache lookups. Since the code cache lookup is a data intensive
function, the data cache miss rate increases (Figure 8).

Finally, Figure 8 also shows that the impact of the instruc-
tion cache on the performance of TOL is negligible. In fact,
TOL has small static code footprint which allows the majority
of its code to reside in the first level instruction cache.

D. Interaction

In this subsection, we analyze the effect when TOL and the
emulated x86 application share the processor resources. Even
though they could run in different cores, we want to know
the degree of interaction between them. Therefore, if they are
forced to run in the same core, we know in advance the penalty
we can expect. Due to space limitations, we limit the results
to the average of each suite and four special cases, which
were selected based on the characteristics described in Section
III-B, that is: 470.lbm has high dynamic/static instructions
ratio; 007.jpg2000enc has a dynamic/static instructions ratio
close to the SBM promotion threshold and high SBM activity;
107.novis ragdoll has low dynamic/static instructions ratio
and high interpreter activity; and 400.perlbench has high
number of x86 indirect branches and transitions to TOL.

Figure 9 depicts the distribution of the execution time,
where cycles are categorized into the main sources of bub-
bles and those spent retiring instructions, from bottom to
top: 1) Data cache miss bubbles: caused every time a data
access misses; 2) Instruction cache miss bubbles: caused
in the back-end, because of an instruction miss; 3) Branch
bubbles: propagated to the back-end, because of branch miss
predictions; 4) Instruction Scheduling: time during which the
IQ does not issue instructions, due to data dependencies or
execution unit availability; 5) Instructions: cycles spent retiring
instructions. Note that Figure 9 differentiates the percentage
that corresponds to TOL and the emulated application.

On average, bubbles account for the 48% of the execution
time, of which 26% is spent waiting for data (data cache miss
bubbles), 6% is spent with instruction misses that propagated

to the back-end, 4% corresponds to branch bubbles, and finally
12% of the time the IQ cannot issue an instruction due to data
dependencies or resource unavailability.

It is interesting noting that instructions and bubbles dis-
tribute differently between TOL and the application in the
four special cases. Applications with high dynamic/static in-
structions ratio, like 470.lbm, amortize almost all the overhead
introduced by TOL; actually for them the perceived TOL
overhead ranges from 2% to 5%. As Figure 9 shows, TOL
has minimal impact on the final performance. On the other
hand, for applications with low ratio and high IM activity,
like 107.novis ragdoll, TOL impacts performance significantly
since it is responsible for most of the bubbles. The same
applies for applications where there is high SBM activity, like
007.jpeg2000enc, since the overhead is not being amortized by
frequent repetition of the optimized code. Finally, applications
with frequent transition to TOL because of indirect branches,
like 400.perlbench, are impacted significantly.

The overall performance is impacted by the interaction of
TOL and the application on the resources of the processor.
Information kept in the data and instruction caches, as well as
the branch predictor and the prefetcher is based on temporal
and spatial locality. When both entities compete for resource
allocation, the information that was built for the one is being
polluted by the other resulting in performance degradation.
As such, studying the interaction between the application and
TOL on the processor is of significant importance. Note that
TOL performance depends on the application characteristics,
a different case of SMT (Simultaneous Multithreading) pro-
cesses where the two workloads are independent.

Figure 10 shows the results of this interaction, by pre-
senting the effect of resource sharing. In order to isolate
the performance of the application, we ignore the instruction
stream of TOL in the timing simulator, thus devoting all
resources to the application. We repeat the same for TOL
ignoring all the instructions of the application. The results
are presented in Figure 10 in terms of relative execution
time, i.e. execution time when interaction is not modeled



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

470.lbm 007.jpg2000enc 107.novis_ragdoll 400.perlbench INT FP

Outliers SPEC CPU2006 Mediabench Physicsbench

P
e

rc
e

n
ta

g
e

 o
f 

e
xe

cu
ti

o
n

 t
im

e
APP Instructions

TOL Instructions

APP Instruction Scheduling

TOL Instruction Scheduling

APP branch bubbles

TOL branch bubbles

APP I$ miss bubbles

TOL I$ miss bubbles

APP D$ miss bubbles

TOL D$ miss bubbles

Fig. 9: Main bubble source divided into TOL and the application.

0

0.2

0.4

0.6

0.8

1

1.2

w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o w/ w/o

470.lbm 007.jpg2000enc 107.novis_ragdoll 400.perlbench SPEC INT SPEC FP Mediabench Physicsbench

Outliers Averages

R
e

la
ti

v
e

 n
u

m
b

e
r 

o
f 

cy
cl

e
s 

w
it

h
o

u
t 

in
te

ra
ct

io
n

Application

TOL

Fig. 10: Performance difference when TOL and Application do not interact.

(w/o) against the execution time when interaction is modeled
(w/). It presents this relative execution time for TOL and the
application, including data for the average of each suite and
the four most relevant outliers.

The experimental results clearly depict that the interaction
between TOL and the application has a negative impact on
performance. In the case of SPEC INT the degradation is 10%
on average with TOL contributing 4.2% and the application
5.8%. For SPEC FP the degradation in performance is around
3%, lower than SPEC INT. This can be justified by the low
contribution of TOL in the total amount of instructions and
bubbles, as shown in Figure 9. Since TOL has lower activity
for SPEC FP, compared to SPEC INT, the resources are
devoted to the application’s emulation for most of the time,
thus reducing the effect of the interaction.

It is important to note that the four special categories also
follow a trend. For applications like 470.lbm, with low TOL
activity, the performance impact due to the interaction is
negligible. Furthermore, for applications with high IM, BBM
and SBM activity, like 007.jpg2000enc and 107.novis ragdoll,
the impact on performance is around 6% which is aligned
with the average for their respective suites. However, for
applications with high TOL activity throughout the execution,
like 400.perlbench, performance is degraded significantly, by
20%. Another application in the same category is 403.gcc,
where performance degradation is 14%. The high number
of indirect branches in both applications, is causing frequent
transitions to TOL for code cache lookups. Since the code

cache lookup is a data intensive process, a huge impact on the
number of data cache miss bubbles is expected, for both TOL
and application.

Figure 11 illustrates the reasons behind the performance
degradation. Specifically, it points out how much resources
would be affected by the interaction and the potential perfor-
mance gains, if this interaction was eliminated.

The data cache is the component that could provide the
best performance improvement. The case of 400.perlbench is
quite interesting. The frequent transitions between TOL and
the application is causing some interesting side effects. Every
time TOL is invoked to provide the next region of code to be
executed, a code cache lookup is performed. The code cache
lookup traverses a table that maps x86 instruction pointers to
the position in the code cache where the translation is stored.
This data intensive process is evicting lines that are useful to
the application, thus increasing the amount of bubbles. While
the application is executing, the lines of the lookup tables
could be evicted. The impact of this ping-pong effect on the
data lines is reflected into 7% data miss bubbles for TOL and
10.6% data miss bubbles for the application.

The impact of other components, while not as high as the
data cache, is not negligible. Branch bubbles are increased
when the two entities share resources. This can be caused
by the pollution of the branch history collected for the one
while the other is executing. Instruction cache misses are also
increased by the interaction, as instruction lines of TOL can
be evicted by the application and vice versa.



-1%

0%

1%

2%

3%

4%

5%

6%

7%

8%

4
7

0
.l

b
m

0
0

7
.j

p
g

2
0

0
0

e
n

c

1
0

7
.n

o
vi

s_
ra

g
d

o
ll

4
0

0
.p

e
rl

b
e

n
ch

S
P

E
C

 C
P

U
2

0
0

6
 I

N
T

S
P

E
C

 C
P

U
2

0
0

6
 F

P

M
e

d
ia

b
e

n
ch

P
h

ys
ic

sb
e

n
ch

Outliers Averages

P
o

te
n

ti
a

l 
im

p
ro

v
e

m
e

n
t 

o
f 

T
O

L
D$ miss bubbles I$ miss bubbles Instruction scheduling Branch bubbles

(a)

-1%

1%

3%

5%

7%

9%

11%

13%

4
7

0
.l

b
m

0
0

7
.j

p
g

2
0

0
0

e
n

c

1
0

7
.n

o
vi

s_
ra

g
d

o
ll

4
0

0
.p

e
rl

b
e

n
ch

S
P

E
C

 C
P

U
2

0
0

6
 I

N
T

S
P

E
C

 C
P

U
2

0
0

6
 F

P

M
e

d
ia

b
e

n
ch

P
h

ys
ic

sb
e

n
ch

Outliers Averages

P
o

te
n

ti
a

l 
im

p
ro

v
e

m
e

n
t 

o
f 

A
P

P

D$ miss bubbles I$ miss bubbles Instruction scheduling Branch bubbles

(b)

Fig. 11: Potential performance gains by improving the interaction: a) for TOL and b) for the application.

E. Discussion

Our study has identified the key elements that should be
considered to improve any HW/SW co-design processor:

• The data cache is the main problem, making techniques
such as software prefetching, data speculation and oppor-
tunistic memory disambiguation of major importance.

• Techniques targeting instruction scheduling are also
critical for performance. These could include different
scheduling algorithms and code reordering.

• The third most important category is the instruction cache
misses, where TOL could help with software prefetching
and code placement in the code cache.

• Finally, there is still potential for software enhancement
of indirect branches, e.g. by decreasing their number
through speculative resolution (using compensation code
when speculation was wrong), or as discussed in [24].

It is worth noting that the absolute numbers presented in the
study (such as IPC, bubble source distribution, etc) may vary
for different guest/host ISAs or microarchitectural parameters.
However, the trends observed (such as higher dynamic/static
instruction ratio leads to lower TOL overhead) and conclusions
made will still hold. The objective of the paper is to identify
the critical issues that need to be taken into account when
designing HW/SW co-design processors.

IV. RELATED WORK

A lot of work has been performed in the field of dynamic
binary translation and optimization. In this section we provide
a non-exhaustive representative subset of few projects.

Nvidia Denver [7] and Transmeta’s Crusoe [1], [2] and
Efficeon [3] are the most representative examples of com-
mercial products based on HW/SW co-designed architecture.
Nvidia Denver executes ARMv8 binaries on 7-wide in-order
cores to keep the power budget to minimum, and relies
on dynamic binary optimizations for enhancing performance.
Similarly, Transmeta Crusoe executes x86 binaries on a VLIW
architecture and employs dynamic optimization to improve
performance. The data published in these cases are limited to
the power and performance benefits, but no characterization
of the processor or the software layer has been made public.

DAISY [4] basically executes PowerPC code on top of a
VLIW processor by forming groups from operations among
multiple paths. The evaluation focuses on the relative overhead
of the dynamic compilation, but no micro-architectural statis-
tics are provided. The BOA project [5] is DAISY’s evolution
and targets the design of a high frequency processor by
keeping the hardware simple. The evaluation focuses on the
CPI of the software layer and the emulated application.

PARROT [25] and rePLay [26], [27] are the most represen-
tative examples of hardware-based optimizers. The use of a
hardware optimizer avoids the translation overheads at the cost
of increased transistor count and power, and flexibility loss.
PARROT emphasizes on performance and power-awareness,
whereas rePLay only on performance. In both cases, they
evaluate the quality of their optimizations and present microar-
chitectural statistics regarding the execution profile.

Purely software based approaches include Dynamo [28],
DynamoRIO [29], IA-32 EL [30], and Strata [31]. Dynamo
and DynamoRIO are dynamic binary optimizers with same
host/guest ISA whereas IA-32 EL translates and optimizes x86
binaries for the Itanium architecture. The published data com-
pare the performance to native execution and present statistics
regarding the translation/optimization process. However, they
do not present any micro-architectural statistics.

Instead of proposing a complete system, other works focus
on the characterization of particular solutions. Examples of
works targeting control flow handling include [32], [23], [20],
[21], [22]. Code cache management is discussed in [33].

Although for each of the previous systems the results are
sound and robust, a global study about the overhead generated
by the software layer of a co-designed processor cannot be
extracted. To the best of our knowledge, this is the first paper
that provides a detailed microarchitectural characterization of
the software layer and a detailed study of the interaction
between the software layer and the emulated application.

V. CONCLUSION

This work presented a detailed quantitative characterization
of the software layer of a HW/SW co-designed processor. The
key observations can be extrapolated to similar systems.



We concluded that the overhead introduced by TOL and
hence its performance depends on the characteristics of the
emulated application. Specifically, the most important factors
are the size of the static code, the dynamic/static instruc-
tions ratio and its closeness to promotion threshold, and
the complexity of the control flow. TOL demonstrates good
performance if the application has small static code and
high repetition. However, TOL has lower performance for
applications with complex control flow with respect to indirect
branches, due to the high amount of code cache lookups
performed. We also analyzed the impact of the interaction
of TOL and the application on the shared resources of the
processor. We observed that the impact of this interaction
ranges from almost 0% to 20%, again depending on the
characteristics of the emulated application. Finally, we iden-
tified four key elements (data cache, instruction scheduling,
instructions cache, and indirect branches) that need to be
further investigated/analyzed to shrink the variations in TOL
performance for the benchmarks analyzed.

ACKNOWLEDGMENT

This work has been partially supported by the Spanish
Ministry of Economy and Competitiveness and Feder Funds
under grant TIN2013-44375-R.

REFERENCES

[1] A. Klaiber, “The technology behind Crusoe processors,” Transmeta
Corporation White Paper, Jan. 2000.

[2] J. C. Dehnert, B. Grant, J. P. Banning, R. Johnson, T. Kistler, A. Klaiber,
and J. Mattson, “The transmeta code morphing - software: Using
speculation, recovery, and adaptive retranslation to address real-life
challenges,” in International Symposium on Code Generation and Op-
timization (CGO), March 2003.

[3] K. Krewell, “Transmeta gets more efficeon,” Micro-processor Report
17(10), 2003.

[4] K. Ebcioğlu and E. R. Altman, “Daisy: Dynamic compilation for
100architectural compatibility,” in Proceedings of the 24th Annual
International Symposium on Computer Architecture (ISCA), 1997.

[5] S. Sathaye, P. Ledak, J. Leblanc, S. Kosonocky, M. Gschwind, J. Fritts,
A. Bright, E. Altman, and C. Agricola, “Boa: Targeting multi-gigahertz
with binary translation,” in In Proc. of the 1999 Workshop on Binary
Translation, 1999.

[6] Intel HW/SW co-designed processor project.,
http://www.eetimes.com/document.asp?doc id=1266396.

[7] D. Boggs, G. Brown, N. Tuck, and K. S. Venkatraman, “Denver: Nvidia’s
first 64-bit arm processor,” IEEE Micro, vol. 35, no. 2, Mar 2015.

[8] N. Neelakantam, D. R. Ditzel, and C. Zilles, “A real system evaluation
of hardware atomicity for software speculation,” in Proceedings of the
Fifteenth Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XV, 2010.

[9] R. Kumar, A. Martnez, and A. González, “Speculative dynamic vec-
torization to assist static vectorization in a hw/sw co-designed environ-
ment,” in 20th Annual International Conference on High Performance
Computing, Dec 2013.

[10] C. Wang, Y. Wu, and M. Cintra, “Acceldroid: Co-designed acceleration
of android bytecode,” in Code Generation and Optimization (CGO),
2013 IEEE/ACM International Symposium on, Feb 2013.

[11] M. Lupon, E. Gibert, G. Magklis, S. Samudrala, R. Martı́nez, K. Stavrou,
and D. R. Ditzel, “Speculative hardware/software co-designed floating-
point multiply-add fusion,” in Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ser. ASPLOS ’14, 2014.

[12] R. Kumar, A. Martı́nez, and A. González, “Efficient power gating of
simd accelerators through dynamic selective devectorization in an hw/sw
codesigned environment,” ACM Trans. Archit. Code Optim., vol. 11,
no. 3, pp. 25:1–25:23, Jul. 2014.

[13] M. A. Laurenzano, Y. Zhang, J. Chen, L. Tang, and J. Mars, “Powerchop:
Identifying and managing non-critical units in hybrid processor architec-
tures,” in Proceedings of the 43rd ACM/IEEE International Symposium
on Computer Architecture (ISCA), ser. ISCA-43, 2016.

[14] D. Pavlou, A. Brankovic, R. Kumar, M. Gregori, K. Stavrou, E. Gibert,
and A. Gonzalez, “Darco: Infrastructure for research on hw/sw co-
designed virtual machines,” In Proceedings of the 4th Workshop on
Architectural and Microarchitectural Support for Binary Translation
(AMAS-BT11), held in conjuction with ISCA-38, 2011.

[15] A. Klaiber and S. Chau, “Automatic detection of logic bugs in hardware
designs,” in Fourth International Workshop on Microprocessor Test and
Verification, Common Challenges and Solutions (MTV 2003), 2003.

[16] “Standard Performance Evaluation Corporation. SPEC CPU2006 Bench-
marks,” http://www.spec.org/cpu2006/, accessed: 2016-04-16.

[17] “MediaBench II Benchmark,” http://euler.slu.edu/ fritts/mediabench/,
accessed: 2016-04-16.

[18] T. Y. Yeh, P. Faloutsos, S. J. Patel, and G. Reinman, “Parallax: An
architecture for real-time physics,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA), 2007.

[19] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for Systems
and Processes (The Morgan Kaufmann Series in Computer Architecture
and Design), 2005.

[20] J. D. Hiser, D. Williams, W. Hu, J. W. Davidson, J. Mars, and B. R.
Childers, “Evaluating indirect branch handling mechanisms in software
dynamic translation systems,” in Proceedings of the International Sym-
posium on Code Generation and Optimization (CGO), 2007.

[21] H. Kim, J. A. Joao, O. Mutlu, C. J. Lee, Y. N. Patt, and R. Cohn,
“Vpc prediction: Reducing the cost of indirect branches via hardware-
based dynamic devirtualization,” in Proceedings of the 34th Annual
International Symposium on Computer Architecture (ISCA), 2007.

[22] H.-S. Kim and J. E. Smith, “Hardware support for control transfers in
code caches,” in Proceedings of the 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, ser. MICRO 36. Washington,
DC, USA: IEEE Computer Society, 2003.

[23] B. Dhanasekaran and K. Hazelwood, “Improving indirect branch trans-
lation in dynamic binary translators,” in ASPLOS Workshop on Runtime
Environments/Systems, Layering, and Virtualized Environments, ser. RE-
SoLVE, Newport Beach, CA, March 2011.

[24] D. S. McFarlin and C. Zilles, “Bungee jumps: Accelerating indirect
branches through hw/sw co-design,” in Proceedings of the 48th Inter-
national Symposium on Microarchitecture, ser. MICRO-48. New York,
NY, USA: ACM, 2015.

[25] R. Rosner, Y. Almog, M. Moffie, N. Schwartz, and A. Mendelson,
“Power awareness through selective dynamically optimized traces,” in
Computer Architecture, 2004. Proceedings. 31st Annual International
Symposium on, June 2004.

[26] S. J. Patel and S. S. Lumetta, “replay: A hardware framework for
dynamic optimization,” IEEE Transactions on Computers, vol. 50, no. 6,
pp. 590–608, Jun 2001.

[27] B. Slechta, D. Crowe, B. Fahs, M. Fertig, G. A. Muthler, J. Quek,
F. Spadini, S. J. Patel, and S. Lumetta, “Dynamic Optimization of Micro-
Operations,” in HPCA. IEEE Computer Society, 2003.

[28] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A transparent dy-
namic optimization system,” in Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation, ser.
PLDI ’00, 2000.

[29] D. Bruening, T. Garnett, and S. Amarasinghe, “An infrastructure for
adaptive dynamic optimization,” in Proceedings of the International
Symposium on Code Generation and Optimization (CGO), 2003.

[30] L. Baraz, T. Devor, O. Etzion, S. Goldenberg, A. Skaletsky, Y. Wang,
and Y. Zemach, “Ia-32 execution layer: A two-phase dynamic translator
designed to support ia-32 applications on itanium R©-based systems,” in
Proceedings of the 36th Annual IEEE/ACM International Symposium on
Microarchitecture, ser. MICRO 36, 2003.

[31] K. Scott, N. Kumar, S. Velusamy, B. Childers, J. W. Davidson, and M. L.
Soffa, “Retargetable and reconfigurable software dynamic translation,”
in Proceedings of the International Symposium on Code Generation and
Optimization, ser. CGO ’03, 2003.

[32] E. Borin and Y. Wu, “Characterization of dbt overhead.” in IISWC.
IEEE Computer Society, 2009.

[33] K. Hazelwood and M. D. Smith, “Managing bounded code caches in
dynamic binary optimization systems,” ACM Trans. Archit. Code Optim.,
vol. 3, no. 3, pp. 263–294, Sep. 2006.




