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1. INTRODUCTION 
Hardware/Software (HW/SW) co-designed processors have 

emerged as a promising solution to the power and complexity 
problems of modern microprocessors. These processors keep their 
hardware simple in order not to hit the power wall and utilize 
dynamic optimizations to improve the performance. However, 

vectorization, one of the most potent optimizations, has not yet 
received deserved attention. Compiler´s inability to reorder 
ambiguous memory references severely limits vectorization 
opportunities, especially in pointer rich applications. 

This paper presents a speculative dynamic vectorization 
algorithm that speculatively reorders ambiguous memory 
references to uncover vectorization opportunities. The hardware 
checks for any memory dependence violation due to speculative 

vectorization and takes corrective action in case of violation. The 
algorithm does not require any compiler or operating system 
support. Moreover, it can vectorize legacy code which was not 
compiled for any SIMD accelerator. 

  

2. ALGORITHM 
The software layer of our co-designed processor is called 

Emulation Software Layer (ESL). ESL operates in three 
translation modes for generating host code from guest x86 code: 
Interpretation Mode (IM), Basic Block Translation Mode (BBM) 
and Superblock Translation Mode (SBM). Vectorization is done 
in SBM, which is the most aggressive translation/optimization 
level, after applying several standard compiler optimizations. 

 

4.1 Pre-Vectorization Steps 

4.1.1 Superblock Creation 
ESL starts by interpreting guest x86 instruction stream in IM. 

When a basic block is executed more than a predetermined 
number of times, ESL switches to BBM. In this mode, the whole 
basic block is translated and stored in the code cache and the rest 
of the executions of this basic block are done from the code 
cache. Moreover, branch profiling information for direction and 
target of the branches is also collected. Once the execution of a 
basic block exceeds another predetermined threshold, ESL creates 
a bigger optimization region, called superblock, using the branch 

profiling information collected during BBM. A superblock 
generally includes multiple basic blocks following the biased 
direction of branches or unrolled loops.  

4.1.2 Pre-optimizations 
First of all, the superblock is converted into Static Single 

Assignment (SSA) form to remove anti and output dependences. 

Then, the optimizations Constant Propagation, Copy Propagation, 
Constant Folding, Common Sub-expression Elimination and Dead 
Code Elimination are applied. The next step is to generate the 

Data Dependence Graph (DDG). During DDG creation, we 

perform memory disambiguation analysis and consecutiveness 
analysis. If memory disambiguation analysis cannot prove that a 
pair of memory operations will never/always alias, it is marked as 
“may alias”. In case of reordering, the original memory 
instructions are converted to speculative memory operations. 
Similarly, consecutiveness analysis finds adjacent memory 
accesses and marks them for vectorization. Apart from this, 
Redundant Load Elimination and Store Forwarding are also 
applied during DDG phase.  

4.2 Vectorization 
The vectorizer packs together a number of independent 

scalar instructions, which perform the same operation, and 
replaces them with one vector instruction. Before describing the 
algorithm, we define a set of conditions that a pair of instructions 
must satisfy to be included in the same pack. The instructions: 

• must be performing the same operation. 

• must be independent. 

• must not have been included in another pack. 

• If the instructions are load/store, they must be accessing 

consecutive memory locations. 
 Vectorization starts by marking all the instructions which 

are candidates for vectorization. Moreover, we mark First Load 
and First Store instructions. First Load/Store instructions are those 
for which there are no other loads/stores from/to adjacently 
previous memory locations. For example, if there is a 64-bit load 
instruction IL that loads from a memory location [M] and there is 

no 64-bit load instruction that loads from address [M – 8], we call 
IL First Load. 

Vectorization begins by packing consecutive stores. Once a 
pack of stores is created, their predecessors are packed before 
packing other stores, if they satisfy the packing conditions. 
Moreover if the last store in the pack has a next adjacent store, it 
is marked as First Store so that a new pack can start from it.  

Once all the stores are packed and their predecessor/ 

successors chains have been followed, we check for remaining 
load instructions that satisfy the packing conditions and pack 
them in the same way as stores.  

Vectorization starting from adjacent loads/stores has an 
obvious limitation: if a superblock does not have any consecutive 
loads/stores, nothing can be vectorized. To tackle this problem, 
after packing all loads/stores and their predecessors/successors, 
we check if still there are some arithmetic instructions which can 
be packed together. If yes, we vectorize them and follow their 

predecessor/successor trees. This allows us to partially vectorize 
loops with interleaved memory accesses. 

While traversing the predecessor/successor tree, if we find 
out that the predecessors of a pack cannot be vectorized, a Pack 
instruction is generated. This Pack instruction collects the results  



 
Figure 1 Normalized Dynamic Instruction Distribution: Without Vectorization, ESL Vectorization and GCC Vectorization 

of all the predecessors into a single vector register and feeds the 
current pack. Similarly, if all the successors of a pack cannot be 

vectorized, an Unpack instruction is generated. This Unpack 
instruction distributes the result of the pack to the scalar successor 
instructions.  

 

3. SPECULATION AND RECOVERY 
Memory speculation is a key optimization to achieve 

performance in HW/SW co-designed systems. For example, 
Transmeta Crusoe [2] reports that, on average, suppressing 
memory reordering causes 10% and 33% performance loss in 
operating system boots and user applications, respectively. Since, 

memory operations play an important role in vectorization, by 
freely reordering them, consecutive memory references can be 
packed together. This not only helps in utilizing memory 
bandwidth but also in vectorization of their dependent arithmetic 
operations. 

ESL labels each load/store instruction with a sequence 
number in original program order. During vectorization or 
instruction scheduling, if a pair of load-store or store-store 

instructions that may alias is reordered, the original load/store 
instructions are converted to speculative load/store instructions.  

To support the speculative execution, we have two sets of 
architectural registers in the hardware: the working set and the 
shadow registers. Before starting the execution of speculative 
code, a copy of the working set is saved into the shadow registers. 
Moreover, during the execution of speculative code, store 
instructions write into a store buffer instead of directly writing to 
the memory. 

 During the execution, if the hardware detects: 

• that a speculative memory instruction with higher 

sequence number is executed before another speculative 
memory instruction with lower sequence number and 

• they access overlapping memory locations, 

an exception in raised. In this case, the contents of the store buffer 
are flushed; register values from the shadow registers are copied 
to the working set; and the execution is restarted in Interpretation 
Mode. On the other hand, in case of successful execution of 
speculative code, values in the store buffer are forwarded to the 
memory and the contents of the shadow registers are discarded. 

If the rate of speculation failures exceeds a predetermined 
limit in a particular superblock, it is recreated without reordering 

ambiguous memory references. 
 

4. PERFORMANCE EVALUATION 
To evaluate the proposed algorithm, we use DARCO [3], 

which is an infrastructure for evaluating co-designed virtual 
machines. DARCO executes guest x86 binary on a PowerPC-like 
RISC host architecture. The proposed algorithm was implemented 
in Emulation Software Layer (ESL) of DARCO. In our 
experiments, we assume that the host architecture supports a 

vector size of 128-bits. Moreover, we vectorize only the floating 
point operations.  

We use a set of applications from SPECFP2006 and 
Physicsbench benchmarks suites and LINPACK for the 
evaluation. All the benchmarks are compiled with gcc-4.5.3 with  
-O3 -fomit-frame-pointer -ffast-math -mfpmath=sse -msse3 flags. 

4.1 FP Dynamic Instruction Elimination 
Figure 1 compares the dynamic instruction reduction by our 

algorithm and that of GCC [1]. Dynamic instruction stream 
includes: Scalar and vector floating point instructions, 
unvectorizable instructions and Pack/Unpack instructions.  

As the figure shows, we are able to reduce, on average, 16%, 
22% and 41% of dynamic instructions and compared to GCC, we 
are able to eliminate, on average, 3%, 22% and 25% more 
dynamic instructions for SPECFP2006, Physicsbench and 
LINPACK respectively. The behavior of Physicsbench is really 
interesting for both vectorization techniques. GCC practically 
does not find any SIMD parallelism in Physicsbench because of 
the extensive use of pointers in this benchmark suite. Moreover, 

these benchmarks consist of complex control flow in the 
frequently executed loops and GCC fails to vectorize them. 
However, our algorithm shows a dynamic instruction reduction of 
22%. This shows that we are able to find significant vectorization 
opportunities even in the cases where GCC fails to vectorize 
anything.  

Our experimental results also show that memory speculation 
doubles the dynamic instruction stream coverage of vectorization. 
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