
Speculative Dynamic Vectorization for HW/SW Co-
designed Processors

Rakesh Kumar
1
, Alejandro Martínez

2
, Antonio González

1, 2

1 Dept. of Computer Architecture, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
2 Intel Barcelona Research Center, Intel Labs, 08034, Barcelona, Spain

rkumar@ac.upc.edu, alejandro.martinez@intel.com, antonio.gonzalez@intel.com

1. INTRODUCTION
Hardware/Software (HW/SW) co-designed processors have

emerged as a promising solution to the power and complexity
problems of modern microprocessors. These processors keep their
hardware simple in order not to hit the power wall and utilize
dynamic optimizations to improve the performance. However,

vectorization, one of the most potent optimizations, has not yet
received deserved attention. Compiler´s inability to reorder
ambiguous memory references severely limits vectorization
opportunities, especially in pointer rich applications.

This paper presents a speculative dynamic vectorization
algorithm that speculatively reorders ambiguous memory
references to uncover vectorization opportunities. The hardware
checks for any memory dependence violation due to speculative

vectorization and takes corrective action in case of violation. The
algorithm does not require any compiler or operating system
support. Moreover, it can vectorize legacy code which was not
compiled for any SIMD accelerator.

2. ALGORITHM
The software layer of our co-designed processor is called

Emulation Software Layer (ESL). ESL operates in three
translation modes for generating host code from guest x86 code:
Interpretation Mode (IM), Basic Block Translation Mode (BBM)
and Superblock Translation Mode (SBM). Vectorization is done
in SBM, which is the most aggressive translation/optimization
level, after applying several standard compiler optimizations.

4.1 Pre-Vectorization Steps

4.1.1 Superblock Creation
ESL starts by interpreting guest x86 instruction stream in IM.

When a basic block is executed more than a predetermined
number of times, ESL switches to BBM. In this mode, the whole
basic block is translated and stored in the code cache and the rest
of the executions of this basic block are done from the code
cache. Moreover, branch profiling information for direction and
target of the branches is also collected. Once the execution of a
basic block exceeds another predetermined threshold, ESL creates
a bigger optimization region, called superblock, using the branch

profiling information collected during BBM. A superblock
generally includes multiple basic blocks following the biased
direction of branches or unrolled loops.

4.1.2 Pre-optimizations
First of all, the superblock is converted into Static Single

Assignment (SSA) form to remove anti and output dependences.

Then, the optimizations Constant Propagation, Copy Propagation,
Constant Folding, Common Sub-expression Elimination and Dead
Code Elimination are applied. The next step is to generate the

Data Dependence Graph (DDG). During DDG creation, we

perform memory disambiguation analysis and consecutiveness
analysis. If memory disambiguation analysis cannot prove that a
pair of memory operations will never/always alias, it is marked as
“may alias”. In case of reordering, the original memory
instructions are converted to speculative memory operations.
Similarly, consecutiveness analysis finds adjacent memory
accesses and marks them for vectorization. Apart from this,
Redundant Load Elimination and Store Forwarding are also
applied during DDG phase.

4.2 Vectorization
The vectorizer packs together a number of independent

scalar instructions, which perform the same operation, and
replaces them with one vector instruction. Before describing the
algorithm, we define a set of conditions that a pair of instructions
must satisfy to be included in the same pack. The instructions:

• must be performing the same operation.

• must be independent.

• must not have been included in another pack.

• If the instructions are load/store, they must be accessing

consecutive memory locations.
 Vectorization starts by marking all the instructions which

are candidates for vectorization. Moreover, we mark First Load
and First Store instructions. First Load/Store instructions are those
for which there are no other loads/stores from/to adjacently
previous memory locations. For example, if there is a 64-bit load
instruction IL that loads from a memory location [M] and there is

no 64-bit load instruction that loads from address [M – 8], we call
IL First Load.

Vectorization begins by packing consecutive stores. Once a
pack of stores is created, their predecessors are packed before
packing other stores, if they satisfy the packing conditions.
Moreover if the last store in the pack has a next adjacent store, it
is marked as First Store so that a new pack can start from it.

Once all the stores are packed and their predecessor/

successors chains have been followed, we check for remaining
load instructions that satisfy the packing conditions and pack
them in the same way as stores.

Vectorization starting from adjacent loads/stores has an
obvious limitation: if a superblock does not have any consecutive
loads/stores, nothing can be vectorized. To tackle this problem,
after packing all loads/stores and their predecessors/successors,
we check if still there are some arithmetic instructions which can
be packed together. If yes, we vectorize them and follow their

predecessor/successor trees. This allows us to partially vectorize
loops with interleaved memory accesses.

While traversing the predecessor/successor tree, if we find
out that the predecessors of a pack cannot be vectorized, a Pack
instruction is generated. This Pack instruction collects the results

Figure 1 Normalized Dynamic Instruction Distribution: Without Vectorization, ESL Vectorization and GCC Vectorization

of all the predecessors into a single vector register and feeds the
current pack. Similarly, if all the successors of a pack cannot be

vectorized, an Unpack instruction is generated. This Unpack
instruction distributes the result of the pack to the scalar successor
instructions.

3. SPECULATION AND RECOVERY
Memory speculation is a key optimization to achieve

performance in HW/SW co-designed systems. For example,
Transmeta Crusoe [2] reports that, on average, suppressing
memory reordering causes 10% and 33% performance loss in
operating system boots and user applications, respectively. Since,

memory operations play an important role in vectorization, by
freely reordering them, consecutive memory references can be
packed together. This not only helps in utilizing memory
bandwidth but also in vectorization of their dependent arithmetic
operations.

ESL labels each load/store instruction with a sequence
number in original program order. During vectorization or
instruction scheduling, if a pair of load-store or store-store

instructions that may alias is reordered, the original load/store
instructions are converted to speculative load/store instructions.

To support the speculative execution, we have two sets of
architectural registers in the hardware: the working set and the
shadow registers. Before starting the execution of speculative
code, a copy of the working set is saved into the shadow registers.
Moreover, during the execution of speculative code, store
instructions write into a store buffer instead of directly writing to
the memory.

 During the execution, if the hardware detects:

• that a speculative memory instruction with higher

sequence number is executed before another speculative
memory instruction with lower sequence number and

• they access overlapping memory locations,

an exception in raised. In this case, the contents of the store buffer
are flushed; register values from the shadow registers are copied
to the working set; and the execution is restarted in Interpretation
Mode. On the other hand, in case of successful execution of
speculative code, values in the store buffer are forwarded to the
memory and the contents of the shadow registers are discarded.

If the rate of speculation failures exceeds a predetermined
limit in a particular superblock, it is recreated without reordering

ambiguous memory references.

4. PERFORMANCE EVALUATION
To evaluate the proposed algorithm, we use DARCO [3],

which is an infrastructure for evaluating co-designed virtual
machines. DARCO executes guest x86 binary on a PowerPC-like
RISC host architecture. The proposed algorithm was implemented
in Emulation Software Layer (ESL) of DARCO. In our
experiments, we assume that the host architecture supports a

vector size of 128-bits. Moreover, we vectorize only the floating
point operations.

We use a set of applications from SPECFP2006 and
Physicsbench benchmarks suites and LINPACK for the
evaluation. All the benchmarks are compiled with gcc-4.5.3 with
-O3 -fomit-frame-pointer -ffast-math -mfpmath=sse -msse3 flags.

4.1 FP Dynamic Instruction Elimination
Figure 1 compares the dynamic instruction reduction by our

algorithm and that of GCC [1]. Dynamic instruction stream
includes: Scalar and vector floating point instructions,
unvectorizable instructions and Pack/Unpack instructions.

As the figure shows, we are able to reduce, on average, 16%,
22% and 41% of dynamic instructions and compared to GCC, we
are able to eliminate, on average, 3%, 22% and 25% more
dynamic instructions for SPECFP2006, Physicsbench and
LINPACK respectively. The behavior of Physicsbench is really
interesting for both vectorization techniques. GCC practically
does not find any SIMD parallelism in Physicsbench because of
the extensive use of pointers in this benchmark suite. Moreover,

these benchmarks consist of complex control flow in the
frequently executed loops and GCC fails to vectorize them.
However, our algorithm shows a dynamic instruction reduction of
22%. This shows that we are able to find significant vectorization
opportunities even in the cases where GCC fails to vectorize
anything.

Our experimental results also show that memory speculation
doubles the dynamic instruction stream coverage of vectorization.

5 REFRENCES
[1] Auto-vectorization in GCC. URL

http://gcc.gnu.org/projects/tree-ssa/vectorization.html
[2] J. C. Dehnert et al. The transmeta code morphing™

software: using speculation, recovery, and adaptive

retranslation to address real-life challenges. In Proceedings

of CGO-01, pages 15–24, 2003.
[3] D. Pavlou et al. DARCO: Infrastructure for Research on

HW/SW co-designed Virtual Machines. In AMAS-BT’11,

held in conjunction with ISCA-38, June 2011.

0

0,2

0,4

0,6

0,8

1

1,2

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

N
o

n
e

E
S

L

G
C

C

410.bwaves 416.gamess 433.milc 434.zeusmp 436.cactusADM 437.leslie3d 453.povray 454.calculix 470.lbm breakable continuous deformable explosions highspeed periodic ragdoll LINPACK SPECFP2006 Physics

SPECFP 2006 Physicsbench Average

N
o

rm
a

li
ze

d
 I

n
st

ru
ct

io
n

 D
is

tr
ib

u
ti

o
n

Scalar Vector Unvectorizable Pack Unpack

