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I. INTRODUCTION

Mobile computing has grown drastically over the past
decade. There are already more than 2 billion mobile devices
in circulation worldwide [1] and the number of mobile sub-
scribers is expected to cross the 6 billion mark in coming years
[2]. A high-quality user experience and longer battery life
are the key challenges in building competent mobile devices
including smartphone, tablets, and other handheld devices.
To meet the heavy processing demands of high-quality user
experience, these devices generally deploy out-of-order (OoO)
processing cores. However, the high energy requirements of
OoO execution directly limit the battery life. This work
investigates a minimum out-of-order core that approaches the
performance of full OoO execution, however, only at a fraction
of its energy cost.

In pursuit of performance, an OoO core exploits an applica-
tion’s inherent instruction level parallelism (ILP) by executing
independent instructions out of the program order. However,
it employs a number of large, complex, and power hungry
hardware structures such as instruction queue (IQ), physical
register files (PRF), and load/store queues (LSQ) etc. to expose
the ILP. Instruction queue, which is typically implemented
as a content addressable memory (CAM), is arguably the
most complex and power hungry structure of an OoO core. It
comprises a complex web of wires and combinational circuits
to broadcast the results (or physical register ids) to make
waiting instructions ready for execution and select among
ready instructions based on set priorities. Furthermore, to
a first order, the complexity and power consumption of IQ
increases quadratically with issue width and linearly with the
number of entries.

In this work, we study the behaviour of SPECcpu2006
workloads and discover that not all instructions need to pass
through these complex OoO structures to expose ILP. In
particular, as shown in Figure 1, we found that in a typcial
mobile core, with 128 ROB entries and 4-wide issue, about
28% of the instructions are ready for execution when they are
dispatched to the IQ, we call these Ready at Dispatch (R@D)
instructions. Also, a further 15% of instructions become ready
within 2 cycles after dispatch, called Almost Ready at Dispatch
AR@D instructions. Based on these results, we make a critical
observation that a complex IQ brings little or no ILP benefits
for these instructions as they can execute in program order
with minimal stalls. Our second key observation is that the
values/results passed among R@D and/or AR@D instructions

Gem
sFDTD

bzip2

dealII

gobm
k

grom
acs

hm
m

er

libquantum

m
cf

m
ilc

nam
d

om
netpp 

povray 

sjeng 

soplex

wrf 
xalancbm

k

AVG

0
10
20
30
40
50
60
70
80
90

100

in
st

ru
ct

io
n

s 
(%

)

Percentage of R@D and AR@D out of total instructions R@D

AR@D

Fig. 1. Percentage of instructions that are either ready for execution at
dispatch (R@D) or become ready within few cycles after dispatch (AR@D).
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Fig. 2. The pipeline view of, a) Conventional OoO Core, and b) Minimum
OoO Core

are seldom read by any other instruction. Therefore, the results
can be directly forwarded to such consumer instructions via
bypass network, without being written to the PRF, hence
saving energy and reducing PRF port contention.

II. THE MINIMUM OUT-OF-ORDER CORE

To exploit the observations made in Section I, we introduce
a minimum out-of-order core, as shown in Figure 2, that
reduces the energy consumption significantly by executing
about 43% of instructions in program order. The proposed
design introduces a first-in first-out instruction queue (FIFO-
IQ) logically in parallel with the regular IQ. The dispatch stage



identifies R@D and AR@D instructions and dispatches them
to the FIFO-IQ for in-order execution. As these instructions are
mostly ready for execution, the FIFO-IQ stalls only very rarely.
The rest of the instructions are dispatched to the regular IQ
similar to a full OoO core. Furthermore, as the regular IQ now
needs to handle significantly fewer instructions, its complexity
and power consumption can be lowered by reducing both
the number of entries and its issue width. Nonetheless, the
overall issue width stays the same as FIFO-IQ also supplies
instructions. The proposed core also tracks the consumers
of R@D and AR@D instructions and their distance from
the producers. If the results can be forwarded to the all
consumers from the bypass network, the destination register
of the producers is cleared and the results are not written to
PRF. Also, a producer instruction is committed only when its
consumer is also ready to commit.

By reducing IQ complexity and power consumption along
with fewer PRF writes, the proposed core design reduce the
overall energy consumption significantly while still delivering
similar performance as a full OoO core.

III. RELATED WORK

A previously proposed technique, called FXA [3], also aims
to reduce energy consumption of an OoO core by executing
some of the instructions in program order. However, FXA uses
a brute force approach of first trying to execute all instructions
in program order and then moving only those instructions for
OoO execution that could not be executed in-order due to
operand unavailability. Our design splits the instruction stream
upfront for in-order and OoO execution. FXA inserts a 4-stage
in-order pipeline within a regular OoO pipeline to support in-
order execution and requires functional unit replication. Our
design, in contrast, shares the same functional units among
in-order and OoO execution. To reduce the area overhead,
FXA replicates only integer functional units; therefore, the
floating point operations are always executed by OoO engine.
Our design, however, has no such limitation. FXA potentially
increases PRF reads as operands first need to be read for in-
order execution and then again for OoO execution if in-order
execution of an instruction fails. A potential solution is to pass
the operands from in-order to OoO execution engine, however
it requires, 64-bit buses to run between these two engines and
saving the ready operands in the IQ; all of which leads to
more energy overhead.
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