
Weeding out Front-End Stalls with Uneven Block
Size Instruction Cache

Roman Brunner
Norwegian University of Science and

Technology (NTNU), Norway

Rakesh Kumar
Norwegian University of Science and

Technology (NTNU), Norway

Abstract—The core front-end remains a critical bottleneck in
modern server workloads owing to their multi-MB instruction
footprints stemming from deep software stacks. Prior work has
mainly investigated instruction prefetching and cache replace-
ment policies to mitigate this bottleneck. In this work, we take
an orthogonal approach and analyze instruction cache storage
efficiency. Our analysis shows that, on average, about 60% of
the bytes in a cache block are never accessed before the block
is evicted from the instruction cache. This represents a huge
storage inefficiency that more than halves the effective cache
capacity. We observe that this inefficiency is caused by the fixed
cache block sizes which are unable to accommodate the varying
spatial locality inherent in the instruction stream. To mitigate
this inefficiency, we propose Uneven Block Size (UBS) instruction
cache, which supports different cache block sizes in a cache
set. Our evaluation shows that UBS cache improves the storage
efficiency by 32 percentage points over the baseline instruction
cache. Further, by supporting uneven block sizes, UBS cache
accommodates more than twice the number of blocks than a
conventional cache within a given storage budget. Overall, the
additional blocks combined with the better storage efficiency
result in UBS cache approaching the performance of a 64KB
conventional cache on a set of server workloads while requiring
a storage budget similar to a 32KB conventional cache.

I. INTRODUCTION

Server applications have seen a continuous demand to pro-
vide increasingly more and complex functionality. Managing
this complexity necessitates implementing the functionality
through deep software stacks. For example, a typical server
request may need to touch a web server, database, storage
and network I/O, logging and monitoring code etc. Such deep
software stacks result in application code footprints reaching
tens of megabytes.

At the microarchitectural level, such massive code footprints
overwhelm the capacity of private per-core front-end struc-
tures, such as instruction cache (L1-I), which are optimized for
low latency rather than high storage capacity. Consequently,
L1-I experiences frequent misses that stall the instruction fetch
for tens of cycles while the miss is filled from lower-level
caches. Such frequent front-end stalls severely limit instruction
delivery to the core, thus resulting in poor performance.

Though the front-end bottleneck is a well-established prob-
lem [1]–[3], prior work has mostly explored prefetching [4]–
[9] and replacement policies [10] to address it. In this work,
we investigate an orthogonal aspect, namely cache storage effi-
ciency, to mitigate this bottleneck. We define storage efficiency
as the fraction of bytes in the L1-I that are actually accessed

by the core. At a cache block level, storage efficiency is the
fraction of bytes in a cache block that are accessed before the
block is evicted from the L1-I.

We analyze the storage efficiency of a 32KB L1-I with 64-
byte blocks on a set of server workloads. Our analysis reveals
that for about 61% of cache blocks, only 32 or fewer bytes are
accessed before they are evicted. Further, for 11% (up to 30%)
of the cache blocks, a meagre 8 or fewer bytes are accessed
before eviction. Finally, there are only 12% of cache blocks
that see all bytes accessed by the core. Overall, these results
show that a large fraction, 60% on average, of L1-I storage
space is occupied by unused bytes, thus drastically reducing
the effective L1-I capacity.

We observe that the poor storage efficiency of L1-I is a
consequence of the fixed cache block size, typically 64 bytes.
Such fixed-sized cache blocks are unable to accommodate
the spatial locality in the instruction stream, which varies
based on branch directions and basic block sizes. This varying
spatial locality results in some cache blocks experiencing
100% utilization while others seeing only 6.25%. Further,
high L1-I MPKI (misses per kilo instructions) exaggerates the
storage inefficiency as it reduces the duration a cache block
stays in L1-I, thus reducing the probability of a byte being
accessed before the block gets evicted.

One possibility for improving L1-I storage efficiency is to
increase spatial code locality, and researchers have proposed
a number of compiler optimizations such as hot/cold splitting
[11], partial inlining [12], code layout optimizations [13], [14],
feedback directed optimizations [15], etc. in that direction.
However, a recent study from Google [4] shows that, despite
all these optimizations, even among their hottest and well-
optimized functions, more than 50% of the code is completely
cold. Further, the study shows that the hot and cold regions
of code are frequently tightly mixed with each other. At the
microarchitectural level, it means that the cold code is brought
into the L1-I along with the hot code. However, the core rarely
fetches the cold code before the cache block containing it is
evicted, thus resulting in high storage inefficiency.

In this work, instead of optimizing the code layout to
increase spatial locality, we seek to design an instruction cache
that can gracefully accommodate varying spatial locality, thus
enabling high storage efficiency. To that end, we propose to
abandon the idea of having fixed-size cache blocks, i.e., the
root cause of the storage inefficiency. Instead, based on our



observation of varying spatial locality, we propose to adopt
uneven cache block sizes and size different ways of a n-way
set associative cache to hold progressively larger blocks. For
example, cache blocks in way-1 may hold 4 bytes, way-2
cache blocks may hold 8 bytes, and so on. In doing so, we
match the spatial locality to the way that provides the best fit.

Unlike a conventional L1-I where an incoming 64-byte
block from L2 cache can be placed anywhere in a set, an L1-
I with uneven block sizes must first predict the useful bytes
in the incoming block and then choose an appropriate way
to place them. To do so, we propose a simple predictor that
filters out the bytes that are unlikely to be accessed during
the lifetime of a block in L1-I while the remaining bytes are
installed in the cache. The predictor is implemented as a small
direct-mapped cache, and an incoming block from L2 cache is
always first placed here. Further, the predictor has a bit-vector
per block to track whether a byte or instruction, depending on
ISA, in the block has been accessed. When a block is evicted
from the predictor, the accessed bytes are moved to one of
the cache ways, which is selected based on the number of
accessed bytes, while the unaccessed bytes are discarded.

This paper introduces Uneven Block Size (UBS) cache to
maximize storage efficiency by placing only the useful bytes
in L1-I. UBS Cache is a set associative L1-I with unevenly
sized ways to accommodate the varying spatial locality of
the instruction stream. It is aimed at keeping only the hot
code (useful bytes) in the cache while weeding out the cold
code (unused bytes) that a conventional L1-I keeps due to its
rigid block size. Our evaluation shows that, for a given storage
budget, UBS cache supports more than twice the number of
cache blocks than a conventional L1-I. Further, it achieves 32
percentage points better storage efficiency than a conventional
cache on a set of server workloads. This work makes the
following key contributions:

• We show that the fixed size cache blocks result in poor
storage efficiency as 60% of the bytes in a cache block
are never accessed before the block is evicted from L1-I.

• Our analysis shows large spatial locality variation in
the instruction stream, implying that a fixed-sized cache
block is not a good fit for capturing this locality.

• We introduce UBS cache, a simple and highly storage-
efficient cache organization with unevenly sized ways that
gracefully accommodate the varying spatial locality.

• We present a useful byte predictor that weeds out the cold
code and places only the hot code in L1-I.

• We demonstrate that, by accommodating more than 2x
cache blocks and providing better storage efficiency, UBS
cache approaches the performance of a 64KB conven-
tional L1-I while requiring a storage budget similar to a
32KB L1-I.

II. BACKGROUND

A. Front-end Bottleneck
Front-end stalls are a long-standing bottleneck in servers,

with the first characterizations appearing in late 90’s [1]–
[3]. While the earlier work showed that databases [1] and

online transaction processing [2] workloads suffer from front-
end stalls due to instruction cache misses, recent work [4],
[16] shows that modern scale-out workloads such as web
search, media streaming, in-memory analytics, web and data
serving etc. are inflicted with the same bottleneck. Nearly a
decade ago, Google published a study [17], profiling their live
datacenter with more than 20,000 machines and showing that
the core front-end was stalled for 15-30% of the execution
time even in their most optimized applications. Their recent
results [4] further emphasize that the front-end bottleneck will
continue to be a serious performance limiter as they show
the front-end stalls to be responsible for nearly 25% of the
execution time.

The front-end remains a bottleneck irrespective of whether
the server applications are implemented as monolithics or a
collection of microservices [18], [19]. A recent study [19] from
Meta shows that their microservices are stalled at the front-
end for up to a whopping 37% of execution time. Furthermore,
even the short-running serverless functions are also severely
bottlenecked by the front-end stalls as a recent study [20]
demonstrates that more than 50% of execution time is spent
on them.

B. Sizing a Cache Block

A cache block is the granularity at which information
is stored in the cache and moved between different cache
levels. By moving information at block granularity, rather than
individual bytes or words as requested by the core, caches
exploit spatial locality as the nearby bytes brought in with the
requested bytes enjoy a hit if accessed by the core. However,
the cache block size offers a trade-off between exploitable
spatial locality, tag overhead, and cache storage efficiency. A
larger block size reduces tag overhead and will likely exploit
more spatial locality as more nearby bytes are brought in with
the requested bytes. However, it might also reduce storage
efficiency if the spatial locality in the cache block turns out to
be low and most of the nearby bytes go unaccessed during the
block’s lifetime in cache. In contrast, small cache block size
increases tag overhead and cannot exploit much spatial locality
as very few nearby bytes are brought in with the requested
bytes. However, it also does not hurt storage efficiency much
if the spatial locality in a cache block turns out to be low.

Our analysis of modern server applications shows large
variations in the spatial locality of their instruction streams.
Therefore, a cache with a fixed block size either misses
opportunities in exploiting spatial locality or exhibits poor
storage efficiency.

III. MOTIVATION

As L1-I offers a very limited capacity to keep the access
latency low, we analyze how efficiently its limited storage is
utilized. To do so, we study the number of bytes accessed in
a cache block during its lifetime in L1-I. The results of this
study are plotted in Figure 1a for the server traces released
by Google [21] and Figure 1b for the Qualcomm server traces



0 10 20 30 40 50 60
Useful Bytes in Cache Block

20%

40%

60%

80%

100%

C
um

ul
at

iv
e

N
um

be
ro

fC
ac

he
B

lo
ck

s

merced
delta
whiskey
charlie
Average

(a) Google traces [21]

0 10 20 30 40 50 60
Useful Bytes in Cache Block

0%

20%

40%

60%

80%

100%

C
um

ul
at

iv
e

N
um

be
ro

fC
ac

he
B

lo
ck

s

(b) Qualcomm IPC-1 server traces [22]

0 10 20 30 40 50 60
Useful Bytes in Cacheline

0%

20%

40%

60%

80%

100%

C
um

ul
at

iv
e

N
um

be
ro

fC
ac

he
lin

es

(c) Qualcomm IPC-1 client/SPEC traces [22]

Fig. 1: Cumulative number of bytes accessed in cache blocks before eviction. Each line in the graph represents a workload.

Fig. 2: Storage efficiency variation in a 32KB L1-I. Please note the y-axis starts at 20% and ends at 80% for better readability.
The bars show average storage efficiency for each workload category.

released for the first instruction prefetching competition (IPC-
1) [22]. The X-axis shows the number of bytes fetched from
the cache block over its lifetime in L1-I, while the Y-axis
shows the cumulative fraction of cache blocks. The Figure 1b
traces are compiled for ARM ISAs which has a fixed 4-byte
instruction size; therefore, the increase in used bytes is in step
of four bytes. In contrast, Figure 1a traces are compiled for
x86 ISA.

Both Figure 1a and Figure 1b show similar trends, i.e., for
nearly 60% of cache blocks, more than 50% of bytes are never
fetched by the core. This represents a huge underutilization of
limited L1-I storage capacity. In fact, this result implies that
the effective storage capacity of a 32KB L1-I is actually less
than 16KB as the rest of it is occupied by useless bytes that
are never accessed.

High L1-I MPKI (misses per kilo instruction) is only
partially responsible for this storage underutilization since
it reduces the lifetime of a cache block thus lowering the
probability of a byte being accessed. However, this is not
the only contributor as we observe similar underutlization for
client and SPEC workloads as well, Figure 1c, despite their

low MPKI since their instruction working sets mostly fit in
L1-I. The fundamental reason for this behaviour is that the
hot and cold code are frequently tightly mixed together [4].
It’s implication at microarchitectural level is that the cold code
is brought in to L1-I along with the hot code in an attempt
to exploit spatial locality. However, the cold code is rarely
accessed, thus resulting in huge storage inefficiency.

Zooming into the results of Figure 1a further highlights the
extent of storage underutilization as it shows that nearly 30%
of cache blocks use barely 8 or fewer bytes from a 64 byte
cache block in Google workloads. Further, 16 bytes or fewer
are accessed for nearly 40% of cache blocks. Figure 1a and
Figure 1b also show that there are very few cache blocks,
around 12% on average, for which all 64 bytes are fetched by
the core. Further, for about 20% of the cache blocks, 60 or
more bytes are fetched by the core.

To further understand the extent of underutilization, we
plot the L1-I storage efficiency distribution in the violin chart
of Figure 2. To generate this data, we sample the L1-I at
a fixed interval of 100K cycles and record the number of
bytes in the cache that have been accessed at least once.



Predictor
evictions

way1 way5 ... way16

L2

tag start_offset

⊆

v

tag idx byte_offset

==

core

...4B 8B 64B 64B
tag array

way 1 ...

mux

...

predictor tag

PredictorCache

tag bit-vectorv

...

...

num_bytes
Fetch PC tag

Fetch PC

Fig. 3: The UBS cache microarchitecture.

As the figure implies, the storage efficiency varies over time;
however, overall, it remains very low. In fact, there are some
periods when the storage efficiency drops as low as 24%.
Also, Google workloads show better storage efficiency than
the other workloads as they employ profile guided code layout
optimizations. Overall, these results emphasize the massive
storage underutilization in L1-I.

We draw the following two key insights based on the
analysis presented in this section:

Large variability in spatial locality: The results in Figure 1a
and Figure 1b imply that there is a large variability in the
spatial locality in the instructions stream. For example, in
Google workloads, 30% of the cache blocks see fewer than
8 bytes accessed, while more than 60 bytes are accessed for
20% of the cache blocks.
One (block) size does not fit all: A single fixed size cache
blocks are inherently unable to capture the large variability
in spatial locality, therefore resulting in massive storage un-
derutilization. Therefore, we need some sort of variability in
block sizes as well to match the spatial locality variability.

IV. UNEVEN BLOCK SIZE (UBS) CACHE

Building on the insights gained in Section III, we introduce
Uneven Block Size (UBS) cache to increase the storage
efficiency. Different ways of UBS cache are sized to hold
different number of bytes so that an incoming cache block
from L2 cache can be placed in an appropriate way based on
its predicted spatial locality, thereby minimizing the storage
underutilization. There are two key differences in the internal
organization of the UBS cache, as shown in Figure 3, that set
it apart from conventional caches.

• While a conventional L1-I has a homogeneous structure
with each way holding 64-bytes; in UBS cache, the ways
are unevenly sized and can hold a different number of
bytes with respect to each other.

• UBS cache employs a Predictor to identify which bytes
or sub-blocks from a 64-byte block to insert in the cache.

A. UBS cache interface

UBS cache maintains the existing interface to the L2 cache,
i.e., it requests/receives a 64-byte cache block from the L2.

The interface to the core fetch engine, however, is slightly
modified. This is because many existing designs always fetch
aligned 16- or 32-byte blocks from L1-I even though many
of these bytes are not on the execution path as predicted by
the branch prediction unit (BPU). As a result, these bytes
are discarded without ever being decoded. In contrast, our
design fetches only those bytes that are on the predicted
execution path. Therefore, the fetch engine needs to provide
the UBS cache with a start byte address and the number
of bytes to be fetched, just like the load-store unit provides
similar information to the data cache. This information is
already produced in the baseline core by the BPU. Concretely,
whenever the BPU predicts a branch to be taken, its target
becomes the start byte address and the number of bytes until
the next predicted taken branch become the number of bytes.
If the fetch range, i.e., number of bytes from the start byte
address, is wider than the fetch bandwidth, the fetch engine (or
cache controller) splits the request into multiple fetch requests.

B. Predictor design

One of the key aspects of UBS cache is to predict the
spatial locality in the 64-byte cache blocks received from L2
cache for inserting only the potentially useful bytes into the
cache. For that, an intuitive approach would be to predict
spatial locality based on history. However, tracking the history
in multi-MB instruction working sets of server applications
would result in a high storage cost for the predictor. Therefore,
we explore a design that, instead of using history, monitors the
first few accesses to the block to predict its spatial locality. To
determine how many accesses are sufficient, we study how
long it takes to touch (i.e. the first access) the bytes that are
accessed during the lifetime of a block in the cache. Figure 4
shows the fraction of bytes accessed during the lifetime of a
block in the cache that are touched between insertion of the
block to cache and the next n misses in the same set. As the
figure shows, about 94.6% (Google), 90.4% (client), 93.3%
(server), and 89.8% (SPEC) of accessed bytes are touched
between the insertion of the block and the very next miss in the
same set. Waiting for more misses only marginally increases
the touched bytes. These results imply that a predictor that
defines useful bytes as the ones that are touched from a block’s



Sheet1

Page 1

ch
a

rl
ie

d
e

lta
m

e
rc

e
d

w
h

is
ke

y
G

O
O

G
L

E
 M

E
A

N

cl
ie

n
t_

0
0

1
cl

ie
n

t_
0

0
2

cl
ie

n
t_

0
0

3
cl

ie
n

t_
0

0
4

cl
ie

n
t_

0
0

5
cl

ie
n

t_
0

0
6

cl
ie

n
t_

0
0

7
cl

ie
n

t_
0

0
8

C
L

IE
N

T
 M

E
A

N

se
rv

e
r_

0
0

1
se

rv
e

r_
0

0
2

se
rv

e
r_

0
0

3
se

rv
e

r_
0

0
4

se
rv

e
r_

0
0

9
se

rv
e

r_
0

1
0

se
rv

e
r_

0
1

1
se

rv
e

r_
0

1
2

se
rv

e
r_

0
1

3
se

rv
e

r_
0

1
4

se
rv

e
r_

0
1

5
se

rv
e

r_
0

1
6

se
rv

e
r_

0
1

7
se

rv
e

r_
0

1
8

se
rv

e
r_

0
1

9
se

rv
e

r_
0

2
0

se
rv

e
r_

0
2

1
se

rv
e

r_
0

2
2

se
rv

e
r_

0
2

3
se

rv
e

r_
0

2
4

se
rv

e
r_

0
2

5
se

rv
e

r_
0

2
6

se
rv

e
r_

0
2

7
se

rv
e

r_
0

2
8

se
rv

e
r_

0
2

9
se

rv
e

r_
0

3
0

se
rv

e
r_

0
3

1
se

rv
e

r_
0

3
2

se
rv

e
r_

0
3

3
se

rv
e

r_
0

3
4

se
rv

e
r_

0
3

5
se

rv
e

r_
0

3
6

se
rv

e
r_

0
3

7
se

rv
e

r_
0

3
8

se
rv

e
r_

0
3

9
S

E
R

V
E

R
 M

E
A

N

sp
e

c_
g

cc
_

0
0

1
sp

e
c_

g
cc

_
0

0
2

sp
e

c_
g

cc
_

0
0

3
sp

e
c_

g
o

b
m

k_
0

0
1

sp
e

c_
g

o
b

m
k_

0
0

2
sp

e
c_

p
e

rl
b

e
n

ch
_

0
0

1
sp

e
c_

x2
6

4
_

0
0

1
S

P
E

C
 M

E
A

N

0%

20%

40%

60%

80%

100%
Next 1 miss Next 2 misses Next 3 misses Next 4 misses

F
ra

ct
io

n
 o

f 
A

cc
e

ss
e

d
 B

yt
e

s

Fig. 4: Fraction of all accessed bytes that are touched (i.e., accessed at least once) between insertion of the block to cache and
the next 1, 2, 3, and 4 misses in the same set.

insertion to the next miss in the set will provide 94.6%, 90.4%,
93.3%, and 89.8% accuracy on Google, client, server, and
SPEC workloads respectively.

Based on the analysis above, we employ a small cache to act
as a locality predictor, and all incoming cache blocks are first
placed here. The predictor maintains a bit-vector per cache
block to record the bytes fetched by the core during a 64-byte
block’s lifetime in the predictor. Notice that for ISAs with fixed
instruction length, such as ARM, RISC-V, etc., recording the
instructions, instead of bytes, fetched by the core is sufficient;
thus reducing the storage requirements of the bit-vector. When
the core fetches a byte, the corresponding bit in the bit-vector
is set. When a block is evicted from the predictor, its bit-vector
is examined to place only the accessed bytes into one of the
UBS cache ways.

Since the predictor is simply a cache, it can take any of the
potential cache organizations. However, based on the results of
Figure 4, a simple direct-mapped organization with the same
number of sets as in the UBS cache suits well. Therefore,
logically, the predictor can be seen as one additional way in
the UBS cache.

C. UBS organization

Several aspects of UBS organization are similar to a con-
ventional cache, while some others differ. Concretely, UBS
cache still stores the tags for 64-byte aligned cache blocks
even though it might not store a full 64-byte block. Further, it
maintains the same number of sets as in a conventional 32KB
instruction cache; however, each set contains more number of
ways. Therefore, the indexing function/logic of the cache stays
the same.

The main difference compared to the conventional cache is
that UBS needs to record what sub-block(s) of a 64-byte block
are stored in the cache. For that, UBS stores the offset of the
first byte, called start offset, of the sub-block in the 64-byte
block as shown in Figure 3. We need 6 bits to represent the
start offset as any of the 64 bytes can be the starting byte
of a sub-block. However, in fixed instruction size ISAs such
as ARM or RISC-V, we need only 4 bits to represent the

start offset assuming 4-byte instructions. Also, note that we
do not need to store the size of the sub-block, as it is implied
by the way where a request hits. For example, a hit in way-1
implies a sub-block size of 4 bytes.

D. Sizing UBS ways

The key idea of UBS cache is to size the cache ways to
match the spatial locality in the instruction stream. Therefore,
we leverage the data in Figure 1 to determine the size of the
ways. The data in these figures suggest that some of the ways
need to hold much smaller blocks than 64 bytes. Therefore, for
a given storage budget per set, UBS cache provides more ways
than the conventional L1-I. Based on the data in Figure 1a
and Figure 1b, we design UBS cache to distribute the storage
budget of a set in 16 ways with the way-sizes of 4-, 4-, 8-, 8-,
8-, 12-, 12-, 16-, 24-, 32-, 36-, 36-, 52-, 64-, 64-, and 64-bytes.
The way sizes are chosen to evenly distribute the pressure on
the ways.

E. UBS cache lookups

On lookups, both the UBS cache and predictor are accessed
in parallel, and a request can hit in only one of these two.
The UBS cache lookup mechanism itself is very similar to
a conventional L1-I lookup. It is indexed with the index bits
of the fetch address, and tag bits are compared with the tags
stored in each way of the selected set as shown in Figure 3.
However, unlike conventional L1-I, a tag match does not
guarantee that the requested instructions are present in UBS
cache. This is because a tag match only indicates that some
(or possibly all) bytes from the 64-byte aligned block are
present in the cache. To identify whether the requested bytes
are present or not, the byte offset bits of the fetch address
are compared with the start offsets stored in the cache. If the
comparison reveals that the requested fetch range is a subset
of the bytes in a UBS cache way, this indicates a hit in the
cache. For example, Fetch Range 1 in Figure 5 is a subset of
one of the sub-blocks present in UBS cache, thus indicating
a hit. Further, it is important to note that the tag comparison
and start offset comparison happen in parallel.



In UBS cache In UBS cache

Hit

Partial Miss

Partial Miss

64B Cache Block

Fetch Range 1

Fetch Range 2

Fetch Range 3

Partial MissFetch Range 4

Fig. 5: UBS cache hit and partial miss

MissFetch Range 5

64B Cache Block

Fig. 6: UBS cache miss

If a sub-block of a 64-byte block is present in UBS cache
but does not contain all the requested bytes, we consider it a
partial miss. There are three scenarios under which a partial
miss can occur as depicted in Figure 5. First, if none of the
requested bytes are present in the cache, as represented by
Fetch Range 2 in Figure 5. We categorize such partial misses
as missing sub-block as the whole sub-block containing the
requested bytes is missing from the cache. Second, if the
starting bytes of the requested bytes are present but the last
bytes are not, as represented by the Fetch Range 3 in Figure 5.
We call such partial misses overruns because the requested
bytes overrun the block present in the UBS cache. Finally, if
the starting bytes of the requested address are not present but
the ending bytes are present, as represented by Fetch Range 4
in Figure 5. Such partial misses are categorised as underruns.
It is also possible that there is no tag match in any of the
ways, indicating that none of the bytes of the 64-byte block is
present in the cache. We categorize such misses as full misses
as shown in Figure 6.

Finally, notice that there might be a tag match in more than
one way on a UBS cache lookup. This is because multiple sub-
blocks from the same 64-byte block can be stored in different
ways. However, there can be a hit in only one of the ways,
as we ensure that sub-blocks are non-overlapping and non-
contiguous.

F. Handling UBS cache misses

On cache misses, including the partial ones, UBS cache
fetches the missing cache block from the lower levels of cache
hierarchy (L2, LLC, etc.) just like a conventional L1-I. The
incoming cache block is placed into the predictor, and the
predicted useful sub-blocks from the victim block are inserted
into the cache.

While moving a sub-block of 64-byte block from the
predictor, the size of the sub-block determines the potential
candidate ways where the sub-block can be placed. One simple
strategy would be place the sub-block in the way that closely
matches its storage requirements. For example, a sub-block
with 16 bytes will always be placed in the way-8 as its storage
capacity matches to the storage requirements of the sub-block.

However, such a strategy would cause unnecessary ‘conflict’
misses if many sub-blocks with a similar size are seen in a
short interval of time. An alternative strategy would be to
place a sub-block in any of the ways that have enough storage
capacity to accommodate the sub-block. For example, a sub-
block with four or fewer bytes can be placed anywhere as
all the ways in a set can accommodate it. However, such a
policy would put more pressure on the ways with larger storage
capacity compared to the ways with lower capacity.

To balance the pressure across ways while also avoiding
‘conflict’ misses, we choose to restrict the number of candidate
ways for placing a sub-block to four. Specifically, if way-n
offers the storage capacity closest to the storage requirements
of the sub-block, we consider ways from way-n to way-n+3
for placing the sub-block. For example, a sub-block with 16
bytes can be placed in one of the ways from way-8 to way-11.
To choose one of these four candidate ways, we use a slightly
modified LRU policy that compares the LRU counters of only
the four candidate ways and replaces the least recently used
among them. The selected candidate way might have capacity
for more bytes than are present by the sub-block. In such
cases, we fill the remaining capacity with the bytes following
the sub-block, even though they had not been accessed.

G. Avoiding duplication in UBS cache

As multiple sub-blocks of a 64-byte block may reside in
different ways of UBS cache, it is important to ensure that
there are no duplicate bytes in these sub-blocks as it will waste
cache capacity. To understand the source of byte duplication,
consider the situation when we see a partial miss in UBS
cache. In this case, since not all the requested bytes are present
in the cache, the full 64-byte block is retrieved from the lower-
level caches. At this point, the full 64-byte block is present in
the predictor, while some of its sub-blocks are already present
in the cache. Later, when the used bytes are moved from
the predictor to the cache, they might overlap with the bytes
which were already present in the cache when the partial miss
occurred; thus resulting in duplicated bytes.

To avoid this duplication, we invalidate the existing sub-
blocks from UBS cache before inserting the useful bytes from
the predictor. The invalidation is done as soon as the partial
miss is detected because the fetch is stalled until the miss is
resolved. Also, the subsequent accesses for the requested block
will be served from the predictor.

Further, before invalidating the sub-blocks, we mark the
corresponding bytes in the bit-vector of the predictor as useful.
This ensures that the useful bytes are not lost if the 64-byte
block stays in the predictor only for a short interval due to a
subsequent miss.

V. METHODOLOGY

To evaluate the performance of the UBS cache, we use
ChampSim [23], [24], a trace-drive simulator that provides a
detailed implementation of the core front-end and the cache hi-
erarchy. We model an 8-way 32KB baseline instruction cache
with a LRU replacement policy. Furthermore, we model a



TABLE I: Microarchitectural parameters.

Core 4 wide fetch, decode and commit, 224
entry ROB, 97 entry scheduler, 128
entry load queue, 72 entry store queue

Branch Prediction
Unit

4K entry BTB, Hashed Perceptron

Instruction Prefetcher FDIP, 128 entry Fetch Target Queue
L1-I 32KB, 8 ways, 4 cycles latency,

LRU, 8 MSHR
L1-D 48KB, 12 ways, 5 cycles latency,

LRU, 16 MSHR
L2 512KB, 8 ways, 12 cycles latency,

LRU, 32 MSHR entries
L3 2MB, 16 ways, 30 cycles latency,

LRU 64 MSHR
DRAM 3200MHz, 1 channel, 1 rank, 8 banks,

12.5 (tRP), 12.5 (tRCD), 12.5 (tCAS)

TABLE II: UBS cache parameters.

Predictor 64-sets, direct-mapped
Cache 64-sets, 16-ways
Cache Way Sizes 4, 4, 8, 8, 8, 12, 12, 16, 24, 32, 36,

36, 52, 64, 64, 64
Replacement Policy Modified LRU
Fetch latency 4 cycles
MSHR 8 entries

cache block size of 64-bytes across the entire cache hierarchy.
In addition, the front-end is equipped with a Fetch Directed
Instruction Prefetcher (FDIP) [7]. The microarchitectural pa-
rameters of the modelled processor are listed in Table I. We
warm up microarchitectural structures 50 million instructions
and run the simulation for another 50 million instructions.

A. Workloads

To assess the L1-I storage efficiency, we use the traces
recently released by Google for a subset of their server
workloads [21], as well as Qualcomm server traces provided
for the first instruction prefetching championship (IPC-1) [22].
Further, we use the Qualcomm traces with fixes made by Feliu
et. al. [25]. Google traces, however, do not contain instruction
dependency information; therefore, there is no reliable way
to generate the performance results for them. Consequently,
we analyze the performance benefits of UBS cache only on
IPC-1 traces. We expect similar performance on Google traces
as well since they show similar L1-I storage efficiency as the
IPC-1 traces as shown in Figure 1a and Figure 1b.

In addition to server traces, IPC-1 traces also include
some client and a subset of SPEC benchmark traces. These
workloads experience much lower L1-I pressure, thus showing
lower L1-I MPKI. We use them in our analysis to understand
how UBS cache behave under low pressure.

B. UBS Cache Configuration

The UBS cache configuration is presented in Table II. Both
the predictor and the cache have 64 sets. The predictor is
direct mapped, whereas the cache is 16-way set associative
with differently sized ways. The replacement policy is LRU
with the modification of that the least recently used UBS cache

TABLE III: Conv-L1I and UBS storage requirements

32KB Conv-L1I UBS Cache
Predictor bit-
vector

- 2B

Start Offsets - 4b × 10 + 3b × 2 + 2b ×
1 + 0b × 3 = 6B

Tag (26b),
LRU (3b/4b),
Valid (1b)

8×(26b+3b+1b)
= 30B

16 ×(26b+4b+1b) (data
tag) + 27b (predictor tag) =
65.375B

Data Array 8×64B = 512B
∑

way sizes = 508B
Total per Set 542B 581.375B
Total Cache 64 × 542B =

33.875KB
64×581.375B = 36.34KB

Overhead
UBS

- 2.46KB

block within 4 ways, starting from the way that offers the
storage capacity closest to the required capacity, is evicted.

VI. EVALUATION

A. Storage Requirements

Table III presents the storage requirements for a conven-
tional L1-I (Conv-L1I) and UBS. The additional storage re-
quirements for UBS stem from the bit-vectors in the predictor,
the start offset bits, and additional tags (and other metadata)
due to higher associativity. Their storage needs for a fixed
instruction size (4-byte) ISA is listed in Table III.

The bit-vector of the predictor needs a single bit per
instruction; therefore, requiring a total of 16 bits or 2B per
set. The bits required for start offset vary based on way size.
Concretely, 64B byte ways do not need start offset, 52B way
needs 2 bits for the start offset as only one of the first four
instructions in the 64B block can be the start offset, 36B/32B
ways needs 3 bits, and the rest of the ways need 4 bits.

Due to higher associativity, UBS stores more tags than
Conv-L1I. Further, higher associativity means more bits for
replacement policy are needed. With 16 ways, UBS needs
4 bits for replacement. Also, since the predictor is direct-
mapped, it does not need LRU bits. Overall, UBS contains
16 ways with 31-bit metadata and one predictor with 27-bit
metadata.

Based on these storage requirements, UBS needs 2.46KB
of additional storage over Conv-L1I.

B. Storage Efficiency

As UBS cache is aimed at boosting storage efficiency, we
first evaluate its effectiveness in doing so. Figure 7 presents
its storage efficiency across Google, client, server, and SPEC
workloads. On average, as the figure shows, UBS cache
achieves a storage efficiency of 72%, 75%, 73%, and 74%
for Google, client, server, and SPEC workloads respectively.
This is a significant improvement over the storage efficiency
of the conventional L1-I which is limited to 60%, 49%, 41%,
and 52% respectively for Google, client, server, and SPEC as
shown in Figure 2. These results highlight the effectiveness of
uneven block sizes employed by UBS cache in improving the
storage efficiency.



Fig. 7: Storage efficiency of UBS. Please note the y-axis starts at 60% and ends at 90% for better readability. The bars show
the average storage efficiency for each workload category.

frontendstalls_relative_overall

Page 1

cl
ie

n
t_

0
0

1
cl

ie
n

t_
0

0
2

cl
ie

n
t_

0
0

3
cl

ie
n

t_
0

0
4

cl
ie

n
t_

0
0

5
cl

ie
n

t_
0

0
6

cl
ie

n
t_

0
0

7
cl

ie
n

t_
0

0
8

C
L

IE
N

T
 M

E
A

N

se
rv

e
r_

0
0

1
se

rv
e

r_
0

0
2

se
rv

e
r_

0
0

3
se

rv
e

r_
0

0
4

se
rv

e
r_

0
0

9
se

rv
e

r_
0

1
0

se
rv

e
r_

0
1

1
se

rv
e

r_
0

1
2

se
rv

e
r_

0
1

3
se

rv
e

r_
0

1
4

se
rv

e
r_

0
1

5
se

rv
e

r_
0

1
6

se
rv

e
r_

0
1

7
se

rv
e

r_
0

1
8

se
rv

e
r_

0
1

9
se

rv
e

r_
0

2
0

se
rv

e
r_

0
2

1
se

rv
e

r_
0

2
2

se
rv

e
r_

0
2

3
se

rv
e

r_
0

2
4

se
rv

e
r_

0
2

5
se

rv
e

r_
0

2
6

se
rv

e
r_

0
2

7
se

rv
e

r_
0

2
8

se
rv

e
r_

0
2

9
se

rv
e

r_
0

3
0

se
rv

e
r_

0
3

1
se

rv
e

r_
0

3
2

se
rv

e
r_

0
3

3
se

rv
e

r_
0

3
4

se
rv

e
r_

0
3

5
se

rv
e

r_
0

3
6

se
rv

e
r_

0
3

7
se

rv
e

r_
0

3
8

se
rv

e
r_

0
3

9
S

E
R

V
E

R
 M

E
A

N

sp
e

c_
g

cc
_

0
0

1
sp

e
c_

g
cc

_
0

0
2

sp
e

c_
g

cc
_

0
0

3
sp

e
c_

g
o

b
m

k_
0

0
1

sp
e

c_
g

o
b

m
k_

0
0

2
sp

e
c_

p
e

rl
b

e
n

ch
_

0
0

1
sp

e
c_

x2
6

4
_

0
0

1
S

P
E

C
 M

E
A

N

0%

10%

20%

30%

40%

50% 6
6

%

6
0

%

6
1

%

8
3

%

8
9

%

9
0

%

5
1

%

5
3

%

5
3

%

5
1

%

5
4

%

UBS cache
64KB cache

F
ro

n
te

n
d

 S
ta

ll 
C

o
ve

ra
g

e

Fig. 8: Front-end stall cycles covered by UBS and 64KB L1-I over the baseline 32KB L1-I (higher is better).

The storage efficiency varies over time, and Figure 2 shows
that it goes as low as 24% for the conventional L1-I. In
comparison, the minimum storage efficiency for UBS cache
is 60%, thus UBS cache improves the minimum storage
efficiency experienced during the course of execution by 36
percentage points. The maximum storage efficiency seen by
the conventional cache is around 80%, whereas UBS cache
achieves a storage efficiency of as high as 87%.

C. Front-end Stall Cycle Coverage
To understand the effectiveness of UBS cache, we assess

its ability to reduce front-end stall cycles across client, server,
and SPEC workloads. We use the stall cycles covered metric
over misses covered metric to precisely capture the impact of
in-flight prefetches, i.e., the ones which have been issued but
the requested block has not arrived to L1-I when needed by
the fetch unit.

Figure 8 plots the fraction of front-end stall cycles covered
by UBS and 64KB L1-I over the baseline 32KB L1-I . The
figure shows that, on average, UBS cache covers 5.3%, 16.5%,

and 4.8% of the front-end stalls in client, server, and SPEC
workloads respectively. The average stall cycle coverage of
UBS is especially pronounced in server workloads as they
put higher pressure on L1-I. Looking at individual workloads,
a number of workloads such as server 002, server 014,
server 015, server 017 to server 022, etc. show a signifi-
cantly high stall cycle coverage. In fact, UBS cache elimi-
nates more than 60% of the front-end stalls on server 002,
server 014 and server 015.

For comparison, Figure 8 also plots the stall cycle coverage
achieved by a conventional 64KB L1-I. On average, the 64KB
cache achieves slightly higher coverage than UBS. This is
because even though UBS cache (including the predictor)
has slightly more blocks than 64KB L1-I, the average blocks
sizes are smaller which leads to partial misses as discussed in
Section IV-E. These partial misses limit the overall stall cycle
coverage. However, there are some server workloads on which
UBS cache provides better coverage than 64KB L1-I because
of fewer partial misses as we present in the next section.



partial_detail_overall

Page 1

cl
ie

n
t_

0
0

1
cl

ie
n

t_
0

0
2

cl
ie

n
t_

0
0

3
cl

ie
n

t_
0

0
4

cl
ie

n
t_

0
0

5
cl

ie
n

t_
0

0
6

cl
ie

n
t_

0
0

7
cl

ie
n

t_
0

0
8

C
L

IE
N

T
 M

E
A

N

se
rv

e
r_

0
0

1
se

rv
e

r_
0

0
2

se
rv

e
r_

0
0

3
se

rv
e

r_
0

0
4

se
rv

e
r_

0
0

9
se

rv
e

r_
0

1
0

se
rv

e
r_

0
1

1
se

rv
e

r_
0

1
2

se
rv

e
r_

0
1

3
se

rv
e

r_
0

1
4

se
rv

e
r_

0
1

5
se

rv
e

r_
0

1
6

se
rv

e
r_

0
1

7
se

rv
e

r_
0

1
8

se
rv

e
r_

0
1

9
se

rv
e

r_
0

2
0

se
rv

e
r_

0
2

1
se

rv
e

r_
0

2
2

se
rv

e
r_

0
2

3
se

rv
e

r_
0

2
4

se
rv

e
r_

0
2

5
se

rv
e

r_
0

2
6

se
rv

e
r_

0
2

7
se

rv
e

r_
0

2
8

se
rv

e
r_

0
2

9
se

rv
e

r_
0

3
0

se
rv

e
r_

0
3

1
se

rv
e

r_
0

3
2

se
rv

e
r_

0
3

3
se

rv
e

r_
0

3
4

se
rv

e
r_

0
3

5
se

rv
e

r_
0

3
6

se
rv

e
r_

0
3

7
se

rv
e

r_
0

3
8

se
rv

e
r_

0
3

9
S

E
R

V
E

R
 M

E
A

N

sp
e

c_
g

cc
_

0
0

1
sp

e
c_

g
cc

_
0

0
2

sp
e

c_
g

cc
_

0
0

3
sp

e
c_

g
o

b
m

k_
0

0
1

sp
e

c_
g

o
b

m
k_

0
0

2
sp

e
c_

p
e

rl
b

e
n

ch
_

0
0

1
sp

e
c_

x2
6

4
_

0
0

1
S

P
E

C
 M

E
A

N

0%

10%

20%

30%

40%

Missing 
Sub-block

Overruns

Underruns

F
ra

ct
io

n
 o

f 
M

is
se

s

Fig. 9: Partial misses in UBS cache, split up by type of partial miss.

cl
ie

n
t_

0
0

1
cl

ie
n

t_
0

0
2

cl
ie

n
t_

0
0

3
cl

ie
n

t_
0

0
4

cl
ie

n
t_

0
0

5
cl

ie
n

t_
0

0
6

cl
ie

n
t_

0
0

7
cl

ie
n

t_
0

0
8

C
L

IE
N

T
 G

M
E

A
N

se
rv

e
r_

0
0

1
se

rv
e

r_
0

0
2

se
rv

e
r_

0
0

3
se

rv
e

r_
0

0
4

se
rv

e
r_

0
0

9
se

rv
e

r_
0

1
0

se
rv

e
r_

0
1

1
se

rv
e

r_
0

1
2

se
rv

e
r_

0
1

3
se

rv
e

r_
0

1
4

se
rv

e
r_

0
1

5
se

rv
e

r_
0

1
6

se
rv

e
r_

0
1

7
se

rv
e

r_
0

1
8

se
rv

e
r_

0
1

9
se

rv
e

r_
0

2
0

se
rv

e
r_

0
2

1
se

rv
e

r_
0

2
2

se
rv

e
r_

0
2

3
se

rv
e

r_
0

2
4

se
rv

e
r_

0
2

5
se

rv
e

r_
0

2
6

se
rv

e
r_

0
2

7
se

rv
e

r_
0

2
8

se
rv

e
r_

0
2

9
se

rv
e

r_
0

3
0

se
rv

e
r_

0
3

1
se

rv
e

r_
0

3
2

se
rv

e
r_

0
3

3
se

rv
e

r_
0

3
4

se
rv

e
r_

0
3

5
se

rv
e

r_
0

3
6

se
rv

e
r_

0
3

7
se

rv
e

r_
0

3
8

se
rv

e
r_

0
3

9
S

E
R

V
E

R
 G

M
E

A
N

sp
e

c_
g

cc
_

0
0

1
sp

e
c_

g
cc

_
0

0
2

sp
e

c_
g

cc
_

0
0

3
sp

e
c_

g
o

b
m

k_
0

0
1

sp
e

c_
g

o
b

m
k_

0
0

2
sp

e
c_

p
e

rl
b

e
n

ch
_

0
0

1
sp

e
c_

x2
6

4
_

0
0

1
S

P
E

C
 G

M
E

A
N

0%

2%

4%

6%

8%

10%

12%

14% 2
1

%

3
0

%

2
9

%

2
0

%

2
7

%

4
3

%

4
4

%

4
1

%

UBS cache
64KB cache

P
e

rf
o

rm
a

n
ce

 I
m

p
ro

ve
m

e
n

t

Fig. 10: Performance improvement by UBS and 64KB L1-I over the baseline 32KB L1-I

As shown in Figure 8, there are some applications, such
as from server 003 to server 013, for which the front-end
stall coverage is very low even with UBS cache and 64KB
conventional cache. This is likely because of the large reuse
distances, in addition to large instruction footprints, that even
UBS cache and 64KB conventional cache cannot capture.

D. Understanding Partial Misses

As described in Section IV-E, we categorize partial misses
as: missing sub-block, overruns, and underruns. Figure 9
presents the distribution of partial misses among these cat-
egories. On average, about 23%, 18.2%, and 26.6% of all
misses are partial misses in client, server, and SPEC workloads
respectively. Partial misses are higher in client and SPEC
workloads because of their lower MPKI. As a consequence, in
the conventional cache, cache blocks stay longer in the cache
and the nearby bytes brought in along with the requested bytes
get much more time to accessed. However, the lifetime of a
block in the predictor of UBS cache is less than the lifetime of
a block in conventional cache. Thus, if the nearby byte are not
accessed during the lifetime of a block in the predictor, they
might result in a partial miss later. The figure also shows that

the partial misses are dominated mainly by missing sub-blocks
and overruns, whereas underruns are comparatively less.

E. Performance Analysis

To understand the performance benefits delivered by the re-
duced front-end stalls, we plot the performance gain achieved
by UBS and 64KB conventional L1-I over a 32KB con-
ventional L1-I in Figure 10. The performance improvement
largely follows the stall cycle coverage trends presented in
Figure 8. Specifically, we see significant performance improve-
ment on several server workloads whereas client and SPEC
workloads show relatively small improvements.

On server workloads, on geometric average, UBS cache
provide about 5.6% performance gain, compared to 6.3% of
64KB L1-I, over the baseline 32KB L1-I. This emphasizes the
effectiveness of UBS cache in improving storage efficiency as
it provides 89% of the performance achievable by doubling
the size of the conventional cache. Notice that on some of
the server workloads, such as from server 023 to server 035,
UBS cache significantly outperforms 64KB L1-I. However,
on some other workloads 64KB L1-I outperforms UBS cache.
These results are in line with the results on front-end stall cycle



Sheet1

Page 1

client server SPEC
0%

5%

10%

15%

20%

25%

30%

35%

16KB UBS 20KB UBS 32KB Conv-L1I 32KB UBS 64KB Conv-L1I

64KB UBS 128KB Conv-L1I 128KB UBS 192KB Conv-L1I

P
e

rf
o

rm
a

n
ce

 Im
p

ro
ve

m
e

n
t

32
K

B

64
K

B

12
8 

K
B

19
2K

B

20
K

B
16

K
B

16
K

B
20

K
B

32
K

B

64
K

B
12

8K
B

19
2K

B

16
K

B
20

K
B

32
K

B

64
K

B

12
8K

B
19

2K
B

Fig. 11: Geomean performance improvement of UBS and
Conv-L1I for different cache sizes over a 16KB Conv-L1I. ipc_absolute_overall

Page 1

client server SPEC
0%

1%

2%

3%

4%

5%

6%

16B Block 32B Block UBS cache

P
e

rf
o

rm
a

n
ce

 Im
p

ro
ve

m
e

n
t

Fig. 12: Geomean performance improvement of 16B and 32B
block size L1-I and UBS over a 64B block Conv-L1I.

coverage and fraction of partial misses. Concretely, UBS cache
sees higher partial misses on the workloads where 64KB L1-I
performs better.

F. UBS at different L1-I sizes

To assess how well UBS performs at different storage
budgets, we plot UBS and conventional L1-I (Conv-L1I)
performance gain at different sizes over a 16KB Conv-L1I
in Figure 11. There are two interesting points to note in this
figure. First, UBS needs significantly less storage than Conv-
L1I to provide similar performance. For example, a 20KB
UBS outperforms 32KB Conv-L1I on server workloads, and
nearly matches its performance on client and SPEC workloads.
Similarly, a 128KB UBS outperforms a much larger 192KB
Conv-L1I on server workloads. Second, for similar storage
budget, UBS always outperforms Conv-L1I. As the figure
shows, this is case for all the cache sizes considered, i.e.,
16KB, 32KB, 64KB, and 128KB.

G. Comparison with smaller block size cache

Reducing the L1-I block size is also likely to improve
storage efficiency as likelihood of unused bytes decreases
with smaller block sizes. To understand their effectiveness,
we compare UBS against L1-I designs with block sizes of
32B and 16B instead of the default 64B. Despite reducing the
block size, we still fetch the entire 64B block from L2 to L1-I
in both designs. Further, the 64B blocks prefetched by FDIP

ipc_absolute_overall

Page 1

client server SPEC
-1%

0%

1%

2%

3%

4%

5%

6%

Line Distillation ACIC GHRP UBS cache

P
e

rf
o

rm
a

n
ce

 Im
p

ro
ve

m
e

n
t

Fig. 13: Geomean performance improvement of UBS and prior
work over Conv-L1I.

are placed into a prefetch buffer and only the requested 16B
or 32B chunks are placed in L1-I.

As reducing the block size while maintaining the cache
capacity results in more tag overhead, we size UBS, 16B
block, 32B block caches to have similar storage budget.
Specifically, 16B block cache, 32B block cache, and UBS
require 37.5KB, 35.75KB, and 36.34 of total storage.

Figure 12 shows that the UBS provides about twice the
performance gain of 16B and 32B block caches on server
workloads which are the target of this work. On client and
SPEC workloads, all three designs provide very similar perfor-
mance. These results show the effectiveness of uneven block
sizes of UBS on applications with high L1-I pressure.

H. Comparison with prior work

Prior work has targeted improving several aspects of L1-I
design. This section compares UBS against a state-of-the-art
cache replacement policy called GHRP [10] and an insertion
policy called ACIC [26]. Further, we compare against a spatial
locality aware data cache design, called Line Distillation [27],
by adapting it to instruction cache.

The results presented in Figure 13 show that all three
techniques improve performance on server workloads, albeit
not as much as UBS. Among the three, ACIC provides the
best performance as it filters out the cache blocks that are
unlikely to see reuse. GHRP improves performance by keeping
those blocks in the cache that are likely to see reuse. However,
both of these techniques work at cache block granularity. In
contrast, UBS captures performance opportunities at a finer
sub-block granularity. More importantly, UBS can work in
congruence with ACIC and GHRP since insertion policy,
replacement policy, and block size are complementary aspects
of a cache design.

On client and SPEC workloads, these techniques barely
provide any performance gain. In fact, adapting Line Dis-
tillation to L1-I shows a small performance drop in both
workload categories. UBS, in contrast, is still able to find some
opportunities and deliver a noticeable performance gain.

I. Latency Analysis

There are two factors that can affect the access latency of
UBS cache compared to a conventional L1-I:



TABLE IV: Tag and data array access latencies.

#ways #sets Block size tag-array latency data-array latency
8 64 64 0.09 ns 0.77 ns

17 64 64 0.12 ns 1.71 ns

• UBS cache features more than twice the number of ways
(including the predictor).

• UBS cache requires additional logic to detect a hit as
it needs to check if the requested bytes are within the
sub-blocks present in the cache.

We assess the impact of both of these factors on the access
latency.

Table IV presents the access latency of tag and data arrays
for different cache designs as reported by CACTI 7.0 [28]
at 22nm technology node. As the table shows, for a 32KB
conventional L1-I, the tag array access latency is only a
fraction of the data array access latency as the tag array takes
0.09ns to access in comparison to 0.77ns of the data array
latency. As the tag and data array are accessed in parallel in
L1 caches, the overall cache access latency is determined by
the data array latency.

1) UBS tag array access latency: Since UBS cache features
17-ways (including the predictor) and 64-sets, we configure
CACTI to model a conventional cache configuration with
17-ways and 64-sets. However, we keep the block size at
64-bytes because CACTI does not supports unevenly sized
ways. Despite the fixed 64-byte block size, the tag array
of this configuration faithfully mimics the tag array of UBS
cache. As the table shows, the tag array access latency of this
configuration is only 0.12ns, still much lower than the access
latency of the data array of a conventional 32KB L1-I. These
results show that increasing the number of ways to 17 does not
make the tag-array latency a limiting factor in overall cache
access latency.

The second factor that can affect the tag array access latency
of UBS cache is the additional logic to check if the requested
bytes are within the sub-blocks present in the cache. One
implementation of such a circuit is depicted in Figure 14.
This circuit checks if the offset (in 64-byte block) of the first
requested byte is greater than or equals to the start offset of
the sub-block present in the cache. Further, it also checks if
the offset (in 64-byte block) of the last requested byte is less
than or equal to the offset of the last byte in the sub-block
which is computed by adding way size to start offset.

Notice that these comparisons start in parallel with the tag
comparison. Also, assuming a 38-bit physical address space
(i.e., 256GB physical memory), a 32KB 8-way set associative
cache with 64-byte blocks will require 26-tag bits. In contrast,
we only need 6-bit arithmetic for checking if the requested
bytes are a subset of the sub-block since byte offsets are only
6-bits. To assess the latency requirements of the additional
logic and compare it against the latency of tag comparison,
we implement them in RTL and synthesize using Cadence
Genus synthesizer with 28nm technology library from ST
Microelectronics. Our analysis shows that the latency of the
added logic is 1.6x of the tag comparison latency. CACTI

26b

tag index

6b

byte_offset

=

26b
≥

6b

6b

6b adder

way size

≥
Hit?

Tag EntryFetch PC

6b last byte offset

v tag start_offset

Fig. 14: Circuit for detecting UBS cache hits.

reports a comparator latency of 0.018ns, thus the added logic
of UBS will have a latency of 0.028ns. This implies that
the tag array access latency increases from 0.12ns to 0.13ns
(0.12ns - 0.018ns + 0.028ns), for a 17-way cache, which is
still significantly lower than the data array latency of a 32KB
conventional cache.

Overall, this analysis shows that the extra ways and the
additional logic do not cause the UBS tag array access latency
to become a bottleneck, as it remains well below the data array
latency.

2) UBS data array access latency: As Table IV shows, the
data array access latency of the 17-way cache is more than
twice than that of an 8-way cache. However, all the ways
in this 17-way cache hold 64-bytes, meaning that the cache
capacity is also more than twice. However, this is not the
case for the UBS cache where some of the ways offer much
lower storage capacity than 64-byte. In fact, the overall storage
capacity of UBS cache is slightly less than 32KB.

Since the overall storage capacity of all the ways of UBS is
similar to the storage capacity of 8-ways of a conventional
32KB L1-I, we can group multiple logical ways of UBS
into a single 64B physical way. For example, one possibility
is to consolidate the ways of sizes [8, 8, 12, 32], [4, 8,
16, 36], [4, 24, 36], [52, 12], [64], [64], [64] together in
seven physical ways, with the predictor being the 8th physical
way. Consequently, UBS cache will have the same number of
physical data ways as a conventional 32KB cache. Therefore,
its data array access latency will also be the same as that of
the baseline 32KB conventional cache.

Note that even though the consolidation results in eight
physical ways in the data array, we still have 16-ways in the
tag array. A side effect of this consolidation is that a tag array
hit in any of the ways that are consolidated together will select
the same data array physical way. For example, based on the
consolidation scheme of the previous paragraph, a tag array
hit in way-3, way-4, way-6, or way-10 will select the physical
way-1 in the data array.

To read the desired bytes out of a 64B physical way, UBS
calculates the shift amount slightly differently compared to a
conventional L1-I because of the logical way consolidation.
The shift amounts in a conventional L1-I can be 0, 16, 32, or
48 bytes, if the core front-end always fetches aligned 16-bytes.
In UBS, however, the shift amount depends on where exactly
the logical way resides in a 64B physical way. Therefore, the



ipc_relative_overall

Page 1

client server SPEC
0%

1%

2%

3%

4%

5%

6%

7%

8%

64-entry, direct-mapped 64-entry, 8 ways, LRU 64-entry, 8 ways, FIFO

64-entry, fully associative 128-entry, 2 ways

P
e

rf
o

rm
a

n
ce

 Im
p

ro
ve

m
e

n
t

Fig. 15: Geomean performance improvement of UBS with
different predictor designs over Conv-L1I.

shift amount, i.e., fetch byte offset1 in the logical UBS block,
needs to be adjusted based on the logical way that sees the
hit. For example, if there is a hit in the logical way-2, the size
of way-1 will be added to the fetch byte offset to get the shift
amount, as that is where the first byte to be fetched from the
way-2 resides in the 64B physical block.

Regarding the latency of calculating the shift amount,
fetch byte offset calculation happens in parallel with the tag
comparison; however, the size of the preceding logical way(s)
is added to it once we know which way sees the hit. This
requires a 6-bit addition; hence, the shift amount is available in
0.13ns (i.e., the hit detection time, Section VI-I1) + 0.01ns (6-
bit adder latency) = 0.14ns. Thus, the shift amount calculation
is not on the critical path as it is available well before the data
array access completes, i.e. latency of 0.77ns(Table IV).

Further, notice that a conventional L1-I with aligned 16-byte
fetch accesses needs to support only four shift amounts, i.e.,
0, 16, 32, or 48 bytes. In contrast, UBS potentially needs to
support all possible shift amounts, i.e. 0-63 and 0-15 in vari-
able and fixed (4-byte) instruction length ISAs respectively.
However, supporting more shift amounts is unlikely to increase
the cache access latency as data caches already support such
shift amounts while providing similar latency to conventional
instruction caches.

To summarize, the analysis in this section shows that the
tag array latency is much lower than the data array latency.
Further, even with more ways and additional hit detection logic
of UBS cache, the tag array latency does not become a limiting
factor. In addition, by consolidating multiple logical ways of
UBS cache into a single 64B physical way, we fit all UBS
ways into eight 64B physical ways; thereby maintaining the
access latency of the data array. Therefore, the access latency
of UBS cache stays the same as that of the baseline 32KB
conventional L1-I.

1fetch byte offset is the offset of the first byte to be fetched from a cache
block. In UBS, fetch byte offset is calculated as byte offset - start offset,
following the nomenclature of Figure 14; whereas fetch byte offset in a
conventional cache is the same as the byte offset.

ipc_absolute_overall

Page 1

1
6

-w
a

y
3

2
K

B

1
0

-w
a

y
(c

o
n

fig
1

)

1
0

-w
a

y
(c

o
n

fig
2

)

1
2

-w
a

y
(c

o
n

fig
1

)

1
2

-w
a

y
(c

o
n

fig
2

)

1
4

-w
a

y
(c

o
n

fig
1

)

1
4

-w
a

y
(c

o
n

fig
2

)

1
6

-w
a

y
(U

B
S

)

1
6

-w
a

y
(c

o
n

fig
2

)

1
8

-w
a

y

0%

1%

2%

3%

4%

5%

6%

Client Server Spec

P
e

rf
o

rm
a

n
ce

 Im
p

ro
ve

m
e

n
t

Fig. 16: Geomean performance gain of UBS and Conv-L1I for
different way configurations over a 32KB Conv-L1I.

J. Impact of predictor organization and size
Figure 15 presents UBS performance gain over Conv-

L1I with different predictor organizations and sizes (64-entry
direct-mapped predictor is the default predictor). Overall, all
the predictors provide similar performance. Even doubling the
predictor size to 128 entries (with additional storage for the
extra 64 entries) does not show drastic performance gain. It is
interesting to see that an 8-way set-associative predictor with
LRU performs slightly worse than the direct-mapped predictor.
This is because the frequently accessed cache blocks stay in
the predictor for longer which effectively reduces the capacity
of the predictor. Therefore, replacing LRU with a FIFO policy
improves performance and nearly matches the performance of
a fully-associative predictor.

K. UBS’s sensitivity to number/size of ways
Figure 16 presents UBS speedup with different numbers of

ways over a 32KB Conv-L1I. Further, the figure plots two
configurations, i.e., config1 and config2, that differ in how the
ways are sized. For example, for 14-way UBS, config1 way
sizes are [4, 4, 8, 12, 16, 24, 28, 28, 32, 36, 36, 64, 64, 64]
and config2 way sizes are [4, 4, 8, 16, 24, 28, 32, 36, 40,
44, 52, 60, 64, 64]. The results show only small performance
variation for UBS with 12 or more ways, especially on server
workloads. For example, 12-way (config2), 14-way (config2),
16-way (config2), and 18-way UBS provide 5.2%, 5.26%,
5.85%, and 5.76% performance gain while the default 16-
way configuration provides a speedup of 5.65%. For the 10-
way configurations, storage efficiency does not improve as
much as for other configurations because the block sizes
stay large for most of the ways. However, it still provides
considerable performance improvement, 3.53% and 4.18%,
respectively, over the baseline on server workloads. The figure
also shows that doubling the number of ways to 16 (and
halving the number of sets to maintain the cache capacity)
in a Conv-L1I provides negligible speedup, especially on the
server workloads (0.26%).

L. Analyzing UBS on More Traces
To further assess the effectiveness of UBS, we evaluate

UBS on traces that were not used in the design process of



UBS. We ran UBS on Championship Value Prediction (CVP-
1) [29] traces: 45 integer, 13 floating-point, and 77 server
traces. Our results show that UBS outperforms a conventional
64KB L1-I on these traces as it achieves 2.6%, 1.5%, and
0.29% performance gain over baseline 32KB L1-I compared to
1.9%, 0.9%, and 0.26% of 64KB conventional L1-I on server,
floating-point, and integer traces respectively.

VII. RELATED WORK

Front-end bottleneck is a well established performance lim-
iter in server applications. Large scale studies from Google [4],
[17] and Meta [19] show that the front-end stalls are respon-
sible for increasingly large fraction of CPU cycles in their
application fleet. Further, recent studies [20], [30] show that
the core front-end is a critical performance bottleneck even in
short running serverless functions.

Over the years, researchers have proposed several prefetch-
ing and replacement approaches to mitigate the front-end
bottleneck. Reinman et. al [7] proposed fetched directed
instruction prefetcher (FDIP) more than two decades ago.
Recent work [8], [31] shows that when coupled with a
large enough branch target buffer (BTB), FDIP approaches
the performance of an ideal L1-I even on modern server
applications. Consequently, researchers have been looking at
reducing BTB misses. Boomerang [8] explicitly identifies
BTB misses and fills them by predecoding corresponding
cache blocks. Shotgun [9], [32] observes that BTB misses for
unconditional branches, i.e. calls, returns, etc., severely limit
prefetching opportunities compared to short taken branches.
Therefore, it reserves bulk of BTB storage for unconditional
branches. UDP [33] aims to improve accuracy and timeliness
of prefetches. PDIP [34] assists FDIP in cases where it
struggles. Further, new BTB designs [35]–[38] have been
proposed to maximize the number of branches in a fixed
BTB storage budget, thus assisting FDIP. BTB prefetching
techniques [39]–[41] have also been explored to further reduce
BTB misses.

Apart from FDIP, many other prefetchers have been in-
vestigated. Temporal stream prefetchers [42]–[45] record the
instruction stream and replay it for prefetching; however, they
incur high storage overhead. EIP [46], [47] is targeted at
improving prefetch timeliness. Further, many software and
profile guided optimization techniques [4], [15], [48]–[54] has
also been proposed. In addition, cache and BTB replacement
policies [10], [55]–[57] have been explored to mitigate the
front-end bottleneck.

As the past research has primarily focused on prefetching
and replacement policies, the instruction cache design itself
has stayed the same with all cache blocks being the same
size. In contrast, there has been some work on spatial locality
aware data caches. However, these designs are either unable to
accommodate the large variability in instruction stream spatial
locality or highly complex to implement. One of these designs,
called Line distillation [27], splits the cache into a word-
organized cache (WOC) and a line-organized cache (LOC)
and moves individual words into the WOC from LOC if the

cacheline exhibits poor spatial locality. However, given the
large variability in the spatial locality, cache blocks with only
two different sizes fall well short of capturing the variability.

Another design, Amoeba [58], chooses a more flexible
approach than Line Distillation by merging the tag and storage
array into a unified storage area. This enables dynamically
allocating as many tags as the workload requires. It uses
a predictor to identify the words that are likely to be used
and fetches only those into the cache. This dynamic behavior
enables a relatively flexible adjustment to the application
requirements. However, this flexibility also makes the design
more complex. For example, the location of tags in the cache
is not fixed; therefore, Amoeba needs to first locate the
tags before doing a tag match. Further, the replacements are
complex, and the cache is prone to fragmentation because an
incoming block might not fit in any of the available spaces in
the set. Further, multiple evictions might be required to make
enough space for the incoming block. UBS cache avoids these
issues by keeping the tag locations fixed. Also, finding a way
where the incoming block fits in UBS cache is easier due to the
fixed size of each way. Further, the spatial locality predictor
of Amoeba requires dedicated storage which is likely to lead
to significant storage overhead given the massive instruction
footprints of server workloads. UBS cache, in contrast, uses
a very simple locality predictor, whose storage requirements
are carved out of the cache storage budget.

VIII. CONCLUSION

Front-end stalls are a long-standing bottleneck in server
workloads, and researchers have proposed several instruction
prefetching and replacement mechanisms to alleviate it. The
paper looked into a largely unexplored aspect for mitigating
the bottleneck. Specifically, we analyzed the cache storage
efficiency, i.e., the fraction of used bytes in the cache. Our
analysis revealed a huge under-utilization of cache capacity
that effectively halves the available storage capacity.

To improve the storage efficiency, this paper proposed a new
cache design called Uneven Block Size (UBS) cache. Each
way of the UBS cache is sized to hold blocks of different
sizes to that they match the spatial locality in the instruction
stream. Our evaluation shows that UBS cache improves the
storage efficiency by 32 percentage points compared to a
conventional cache. Further, by supporting uneven block sizes,
UBS cache more than doubles the number of blocks in the
cache at a given storage budget. Consequently, compared to
a 32KB conventional instruction cache, it reduces front-end
stalls by 16.5%, and provides comparable performance to what
is achieved by a 64KB conventional L1-I, on a set of server
workloads.

ACKNOWLEDGMENT

We thank the reviewers for their valuable feedback. This
work is partially supported through the Research Council of
Norway (NFR) grant 302279 to NTNU.



REFERENCES

[1] Anastassia Ailamaki, David J DeWitt, Mark D Hill, and David A Wood.
DBMSs on a Modern Processor: Where Does Time Go? In VLDB’99,
Proceedings of 25th International Conference on Very Large Data Bases,
September 7-10, 1999, Edinburgh, Scotland, UK, pages 266–277, 1999.

[2] Kimberly Keeton, David A Patterson, Yong Qiang He, Roger C Raphael,
and Walter E Baker. Performance Characterization of a Quad Pentium
Pro SMP Using OLTP Workloads. In Proceedings of the 25th annual
international symposium on Computer architecture, pages 15–26, 1998.

[3] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita V Adve, and
Luiz André Barroso. Performance of Database Workloads on Shared-
Memory Systems With Out-Of-Order Processors. In Proceedings of the
eighth international conference on Architectural support for program-
ming languages and operating systems, pages 307–318, 1998.

[4] Grant Ayers, Nayana Prasad Nagendra, David I August, Hyoun Kyu
Cho, Svilen Kanev, Christos Kozyrakis, Trivikram Krishnamurthy,
Heiner Litz, Tipp Moseley, and Parthasarathy Ranganathan. Asmdb:
understanding and mitigating front-end stalls in warehouse-scale com-
puters. In Proceedings of the 46th International Symposium on Computer
Architecture, pages 462–473, 2019.

[5] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam,
Heiner Litz, and Baris Kasikci. I-SPY: Context-driven conditional
instruction prefetching with coalescing. In Proceedings of the Annual
International Symposium on Microarchitecture, MICRO, volume 2020-
October, pages 146–159. IEEE Computer Society, 10 2020.

[6] Aasheesh Kolli, Ali Saidi, and Thomas F Wenisch. RDIP: Return-
Address-Stack Directed Instruction Prefetching. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 260–271, 2013.

[7] G. Reinman, B. Calder, and T. Austin. Fetch directed instruction
prefetching. In MICRO-32. Proceedings of the 32nd Annual ACM/IEEE
International Symposium on Microarchitecture, pages 16–27, 1999.

[8] Rakesh Kumar, Cheng-Chieh Huang, Boris Grot, and Vijay Nagarajan.
Boomerang: A metadata-free architecture for control flow delivery. In
2017 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 493–504, 2017.

[9] Rakesh Kumar, Boris Grot, and Vijay Nagarajan. Blasting through the
front-end bottleneck with shotgun. In Proceedings of the Twenty-Third
International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, page 30–42, New
York, NY, USA, 2018. Association for Computing Machinery.

[10] Samira Mirbagher Ajorpaz, Elba Garza, Sangam Jindal, and Daniel A.
Jiménez. Exploring predictive replacement policies for instruction cache
and branch target buffer. In 2018 ACM/IEEE 45th Annual International
Symposium on Computer Architecture (ISCA), pages 519–532, 2018.

[11] Robert Cohn and P Geoffrey Lowney. Hot Cold Optimization of
Large Windows/NT Applications. In Proceedings of the 29th Annual
IEEE/ACM International Symposium on Microarchitecture. MICRO 29,
pages 80–89. IEEE, 1996.

[12] Tom Way and Lori L Pollock. Evaluation of a Region-Based Partial
Inlining Algorithm for an ILP Optimizing Compiler. In Proceedings
of the 10th Annual IASTED International Conference on Parallel and
Distributed Computing and Systems, pages 698–705, 2002.

[13] Rahman Lavaee, John Criswell, and Chen Ding. Codestitcher: Inter-
procedural Basic Block Layout Optimization. In Proceedings of the
28th International Conference on Compiler Construction, pages 65–75.
ACM, 2 2019.

[14] Yuxuan Zhang, Tanvir Ahmed Khan, Gilles Pokam, Baris Kasikci,
Heiner Litz, and Joseph Devietti. Ocolos: Online Code Layout Op-
timizations. In 2022 55th IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 530–545. IEEE, 2022.

[15] Dehao Chen, Tipp Moseley, and David Xinliang Li. Autofdo: Automatic
feedback-directed optimization for warehouse-scale applications. In
2016 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 12–23. IEEE, 2016.

[16] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos,
Mohammad Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel
Popescu, Anastasia Ailamaki, and Babak Falsafi. Clearing the Clouds
A Study of Emerging Scale-out Workloads on Modern Hardware. In
Proceedings of the seventeenth international conference on Architectural
Support for Programming Languages and Operating Systems, pages 37–
48. ACM, 3 2012.

[17] Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ran-
ganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. Profiling a
warehouse-scale computer. In Proceedings of the 42nd Annual Interna-
tional Symposium on Computer Architecture, ISCA ’15, page 158–169,
New York, NY, USA, 2015. Association for Computing Machinery.

[18] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon
Jackson, et al. An Open-Source Benchmark Suite for Microservices
and their Hardware-Software Implications for Cloud & Edge Systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
pages 3–18, 2019.

[19] Akshitha Sriraman, Abhishek Dhanotia, and Thomas F Wenisch.
SoftSKU: Optimizing Server Architectures for Microservice Diver-
sity@Scale. In Proceedings of the 46th International Symposium on
Computer Architecture (ISCA), pages 513–526, 2019.

[20] David Schall, Artemiy Margaritov, Dmitrii Ustiugov, Andreas Sandberg,
and Boris Grot. Lukewarm serverless functions: Characterization and
optimization. In Proceedings of the 49th Annual International Sympo-
sium on Computer Architecture, ISCA ’22, page 757–770, New York,
NY, USA, 2022. Association for Computing Machinery.

[21] Parthasarathy Ranganathan and Victor Lee. Advancing Sys-
tems Research with Open-Source Google Workload Traces, 5
2022. https://cloud.google.com/blog/topics/systems/workload-traces-
for-google-warehouse-scale-computers.

[22] 1st Instruction Prefetching Championship Traces. https://research.ece.
ncsu.edu/ipc/infrastructure/#Traces.

[23] ChampSim Simulator. https://github.com/ChampSim/ChampSim.
[24] Nathan Gober, Gino Chacon, Lei Wang, Paul V. Gratz, Daniel A.

Jimenez, Elvira Teran, Seth Pugsley, and Jinchun Kim. The Cham-
pionship Simulator: Architectural Simulation for Education and Com-
petition. 2022.

[25] Josué Feliu, Arthur Perais, Daniel A. Jiménez, and Alberto Ros. Re-
basing microarchitectural research with industry traces. In 2023 IEEE
International Symposium on Workload Characterization (IISWC), pages
100–114, 2023.

[26] Yunjin Wang, Chia Hao Chang, Anand Sivasubramaniam, and Niranjan
Soundararajan. Acic: Admission-controlled instruction cache. In
Proceedings - International Symposium on High-Performance Computer
Architecture, HPCA, volume 2023-February, pages 165–178. IEEE Com-
puter Society, 2023.

[27] Moinuddin K. Qureshi, M. Aater Suleman, and Yale N. Patt. Line
distillation: Increasing cache capacity by filtering unused words in cache
lines. In 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pages 250–259. IEEE, 2007.

[28] Sheng Li, Ke Chen, Jung Ho Ahn, Jay B. Brockman, and Norman P.
Jouppi. Cacti-p: Architecture-level modeling for sram-based structures
with advanced leakage reduction techniques. In 2011 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pages
694–701, 2011.

[29] First Championship Value Prediction. https://www.microarch.org/cvp1/
cvp1online/contestants.html.

[30] Truls Asheim, Tanvir Ahmed Khan, Baris Kasicki, and Rakesh Kumar.
Impact of microarchitectural state reuse on serverless functions. In Pro-
ceedings of the Eighth International Workshop on Serverless Computing,
WoSC ’22, page 7–12, New York, NY, USA, 2022. Association for
Computing Machinery.

[31] Yasuo Ishii, Jaekyu Lee, Krishnendra Nathella, and Dam Sunwoo. Re-
establishing fetch-directed instruction prefetching: An industry perspec-
tive. In 2021 IEEE International Symposium on Performance Analysis
of Systems and Software (ISPASS), pages 172–182, 2021.

[32] Rakesh Kumar and Boris Grot. Shooting down the server front-end
bottleneck. ACM Trans. Comput. Syst., 38(3–4), jan 2022.

[33] Surim Oh, Mingsheng Xu, Tanvir Ahmed Khan, Baris Kasikci, and
Heiner Litz. Udp: Utility-driven fetch directed instruction prefetching.
In 2024 ACM/IEEE 51st Annual International Symposium on Computer
Architecture (ISCA), pages 1188–1201, 2024.

[34] Bhargav Reddy Godala, Sankara Prasad Ramesh, Gilles A. Pokam,
Jared Stark, Andre Seznec, Dean Tullsen, and David I. August. Pdip:
Priority directed instruction prefetching. In Proceedings of the 29th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 2, ASPLOS ’24, page
846–861, New York, NY, USA, 2024. Association for Computing
Machinery.

https://cloud.google.com/blog/topics/systems/workload-traces-for-google-warehouse-scale-computers
https://cloud.google.com/blog/topics/systems/workload-traces-for-google-warehouse-scale-computers
https://research.ece.ncsu.edu/ipc/infrastructure/#Traces
https://research.ece.ncsu.edu/ipc/infrastructure/#Traces
https://github.com/ChampSim/ChampSim
https://www.microarch.org/cvp1/cvp1online/contestants.html
https://www.microarch.org/cvp1/cvp1online/contestants.html


[35] Truls Asheim, Boris Grot, and Rakesh Kumar. A storage-effective btb
organization for servers. In 2023 IEEE International Symposium on
High-Performance Computer Architecture (HPCA), pages 1153–1167,
2023.

[36] Truls Asheim, Boris Grot, and Rakesh Kumar. BTB-X: A storage-
effective BTB organization. IEEE Computer Architecture Letters,
20(2):134–137, 2021.

[37] Niranjan K Soundararajan, Peter Braun, Tanvir Ahmed Khan, Baris
Kasikci, Heiner Litz, and Sreenivas Subramoney. Pdede: Partitioned,
deduplicated, delta branch target buffer. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’21,
page 779–791, New York, NY, USA, 2021. Association for Computing
Machinery.

[38] Vishal Gupta and Biswabandan Panda. Micro btb: A high performance
and storage efficient last-level branch target buffer for servers. In
Proceedings of the 19th ACM International Conference on Computing
Frontiers, CF ’22, page 12–20, New York, NY, USA, 2022. Association
for Computing Machinery.

[39] Tanvir Ahmed Khan, Nathan Brown, Akshitha Sriraman, Niranjan K
Soundararajan, Rakesh Kumar, Joseph Devietti, Sreenivas Subramoney,
Gilles A Pokam, Heiner Litz, and Baris Kasikci. Twig: Profile-guided
btb prefetching for data center applications. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO ’21,
page 816–829, New York, NY, USA, 2021. Association for Computing
Machinery.

[40] Ioana Burcea and Andreas Moshovos. Phantom-btb: a virtualized branch
target buffer design. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating
Systems, ASPLOS 2009, Washington, DC, USA, March 7-11, 2009, pages
313–324, 2009.

[41] James Bonanno, Adam Collura, Daniel Lipetz, Ulrich Mayer, Brian
Prasky, and Anthony Saporito. Two level bulk preload branch prediction.
In 2013 IEEE 19th International Symposium on High Performance
Computer Architecture (HPCA), pages 71–82, 2013.

[42] Michael Ferdman, Thomas F Wenisch, Anastasia Ailamaki, Babak
Falsafi, and Andreas Moshovos. Temporal Instruction Fetch Streaming.
In International Symposium on Microarchitecture, 2008.

[43] Michael Ferdman, Cansu Kaynak, and Babak Falsafi. Proactive Instruc-
tion Fetch. In Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture, 2011.

[44] Cansu Kaynak, Boris Grot, and Babak Falsafi. SHIFT: Shared History
Instruction Fetch for Lean-core Server Processors. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture,
2013.

[45] Cansu Kaynak, Boris Grot, and Babak Falsafi. Confluence: Unified
instruction supply for scale-out servers. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 166–
177, 2015.

[46] Alberto Ros and Alexandra Jimborean. A cost-effective entangling
prefetcher for instructions. In 2021 ACM/IEEE 48th Annual Inter-
national Symposium on Computer Architecture (ISCA), pages 99–111,
2021.

[47] Alberto Ros and Alexandra Jimborean. Wrong-path-aware entangling
instruction prefetcher. IEEE Transactions on Computers, 73(2):548–
559, 2024.

[48] David Xinliang Li, Raksit Ashok, and Robert Hundt. Lightweight
feedback-directed cross-module optimization. In Proceedings of the 8th
annual IEEE/ACM international symposium on Code generation and
optimization, pages 53–61, 2010.

[49] Guilherme Ottoni and Bertrand Maher. Optimizing function placement
for large-scale data-center applications. In 2017 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), pages
233–244. IEEE, 2017.

[50] C-K Luk, Robert Muth, Harish Patil, Robert Cohn, and Geoff
Lowney. Ispike: a post-link optimizer for the intel/spl reg/itanium/spl
reg/architecture. In International Symposium on Code Generation and
Optimization, 2004. CGO 2004., pages 15–26. IEEE, 2004.

[51] Maksim Panchenko, Rafael Auler, Bill Nell, and Guilherme Ottoni.
Bolt: a practical binary optimizer for data centers and beyond. In
2019 IEEE/ACM International Symposium on Code Generation and
Optimization (CGO), pages 2–14. IEEE, 2019.

[52] Chi-Keung Luk and Todd C Mowry. Cooperative prefetching: Compiler
and hardware support for effective instruction prefetching in modern

processors. In Proceedings. 31st Annual ACM/IEEE International
Symposium on Microarchitecture, pages 182–193. IEEE, 1998.

[53] Murali Annavaram, Jignesh M Patel, and Edward S Davidson. Call graph
prefetching for database applications. ACM Transactions on Computer
Systems (TOCS), 21(4):412–444, 2003.

[54] Tanvir Ahmed Khan, Akshitha Sriraman, Joseph Devietti, Gilles Pokam,
Heiner Litz, and Baris Kasikci. I-spy: Context-driven conditional
instruction prefetching with coalescing. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 146–
159. IEEE, 2020.

[55] Nayana Prasad Nagendra, Bhargav Reddy Godala, Ishita Chaturvedi,
Atmn Patel, Svilen Kanev, Tipp Moseley, Jared Stark, Gilles A. Pokam,
Simone Campanoni, and David I. August. Emissary: Enhanced miss
awareness replacement policy for l2 instruction caching. In Proceedings
of the 50th Annual International Symposium on Computer Architecture,
ISCA ’23, New York, NY, USA, 2023. Association for Computing
Machinery.

[56] Tanvir Ahmed Khan, Dexin Zhang, Akshitha Sriraman, Joseph Devi-
etti, Gilles Pokam, Heiner Litz, and Baris Kasikci. Ripple: Profile-
guided instruction cache replacement for data center applications. In
2021 ACM/IEEE 48th Annual International Symposium on Computer
Architecture (ISCA), pages 734–747, 2021.

[57] Shixin Song, Tanvir Ahmed Khan, Sara Mahdizadeh Shahri, Akshitha
Sriraman, Niranjan K Soundararajan, Sreenivas Subramoney, Daniel A.
Jiménez, Heiner Litz, and Baris Kasikci. Thermometer: profile-guided
btb replacement for data center applications. In Proceedings of the 49th
Annual International Symposium on Computer Architecture, ISCA ’22,
page 742–756, New York, NY, USA, 2022. Association for Computing
Machinery.

[58] Snehasish Kumar, Hongzhou Zhao, Arrvindh Shriraman, Eric Matthews,
Sandhya Dwarkadas, and Lesley Shannon. Amoeba-cache: Adaptive
blocks for eliminating waste in the memory hierarchy. In Proceedings
- 2012 IEEE/ACM 45th International Symposium on Microarchitecture,
MICRO 2012, pages 376–388, 2012.


	Introduction
	Background
	Front-end Bottleneck
	Sizing a Cache Block

	Motivation
	Uneven Block Size (UBS) Cache
	UBS cache interface
	Predictor design
	UBS organization
	Sizing UBS ways
	UBS cache lookups
	Handling UBS cache misses
	Avoiding duplication in UBS cache

	Methodology
	Workloads
	UBS Cache Configuration

	Evaluation
	Storage Requirements
	Storage Efficiency
	Front-end Stall Cycle Coverage
	Understanding Partial Misses
	Performance Analysis
	UBS at different L1-I sizes
	Comparison with smaller block size cache
	Comparison with prior work
	Latency Analysis
	UBS tag array access latency
	UBS data array access latency

	Impact of predictor organization and size
	UBS's sensitivity to number/size of ways
	Analyzing UBS on More Traces

	Related work
	Conclusion
	References

