
Uncovering Hidden Instructions in Armv8-A Implementations
Fredrik Strupe∗

Silicon Labs, Norway
fredrik.strupe@silabs.com

Rakesh Kumar
NTNU, Norway

rakesh.kumar@ntnu.no

ABSTRACT
Though system and application level security has received and
continue to receive significant attention, interest in hardware secu-
rity has spiked only in the last few years. The majority of recently
disclosed hardware security attacks exploit well known and docu-
mented hardware behaviours such as speculation, cache and mem-
ory timings, etc. We observe that security exploits in undocumented
hardware behaviour can have even more severe consequences as
such behaviour is rarely verified and protected against.

This paper introduces armshaker, a tool to uncover one such
undocumented behaviour in the Armv8 architecture, namely hidden
instructions. These are the instructions that are not documented in
the ISA reference manual, but still execute successfully. We tested
five different Armv8-A hardware platforms from four different
vendors, as well as two Armv8-A emulators, and uncoveredmultiple
hidden instructions. An interesting finding is that, though we did
not discover any hidden instruction in the hardware itself, bugs in
the system software can induce hidden instructions in the system
that, from a user’s perspective, are indistinguishable from hidden
instructions in hardware.

Though armshaker did not find any hidden instruction in the
hardware of the tested platforms, their existence cannot be ruled
out, given the diversity of available Arm processors. Consequently,
we make armshaker publicly available as open-source software to
enable users to audit their own systems for hidden instructions.

1 INTRODUCTION
Computers and digital systems have become an integral part of
modern life, and something both individuals and societies as awhole
rely on to a great extent. This augments the importance of security
in these systems, as a security breach can have potentially disastrous
consequences. Therefore, system and application level security
has received and continue to receive a lot of attention. Security
at architecture and hardware level, in contrast, has only recently
started to gain momentum after Kocher et. al. [10] showed that the
security of the whole system can be compromised by exploiting
hardware vulnerabilities.

Most of the existing research on architecture/hardware secu-
rity focuses on exploiting well-known and documented hardware

∗This work was done while the author was at NTNU.

HASP ’20, October 17, 2020,
© 2020 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use.
Not for redistribution. The definitive Version of Record was published in HASP ’20:
Workshop on Hardware and Architectural Support for Security and Privacy, October 17,
2020, https://doi.org/10.1145/1122445.1122456.

behaviours for devising offensive and defensive mechanisms. For
example, Spectre [10] and its successors [3, 4, 11] alter a victim
program’s control flow to leak its memory contents by leveraging
a well documented optimization called speculative execution. Simi-
larly, observing the cache/memory response time can also be used
to mount an attack.

We observe that undocumented or hidden behavior of the hard-
ware can create new security vulnerabilities. A great amount of
trust is put into the hardware designers and manufacturers, in that
the hardware functions exactly as documented with no hidden or
undocumented behavior. However, even without any malicious
intent, security vulnerabilities can still be present in hardware as a
result of design bugs [5, 10, 12] or manufacturing faults [14]. For in-
stance, such hidden behaviour was uncovered by Domas [7], when
he revealed the presence of a secret coprocessor in a particular
x86 processor model that could be accessed by executing a certain
combination of machine instructions. This discovery was enabled
by earlier work of his on processor fuzzing of the x86 ISA [6]. Such
hidden behavior needs to be identified and protected against any
possible exploits. The fact that processor verification primarily tar-
gets verifying documented behaviour makes vulnerabilities due to
undocumented behaviour even more likely.

This paper presents a mechanism to uncover one such undocu-
mented behaviour, called hidden instructions. We define a hidden
instruction as a particular instruction encoding that successfully ex-
ecutes on a processor without raising an expected exception, while
at the same time not being officially documented or documented
as unallocated or non-functional. Note that a hidden instructions
does not necessarily mean that the processor does not raise any
exception; rather, the processor raising a wrong exception or the
system software handling the exception incorrectly also indicates
presence of hidden instructions.

To uncover hidden instructions, we introduce a tool, called
armshaker [15], that targets the latest version of the Arm ISA,
namely Armv8-A. Arm is a particularly interesting target because of
its widespread use – ranging from low-powered embedded devices
to state-of-the-art super computers – with a particular prevalence
in smart phones and a corresponding security impact potential.
armshaker works by exhaustively searching through the whole
instruction space of the three instruction sets in Armv8-A (A64,
A32 and T32), executing instructions that are undefined in the ISA
specification. If an undefined instruction executes without faults,
it is marked as a hidden instruction and logged for further analy-
sis. As Armv8-A itself is an architectural specification, armshaker,
strictly speaking, tests implementations of the ISA. It is therefore
not limited to testing only physical processors, but can also probe
virtual (emulated) implementations such as ISA emulators.

We used armshaker to examine three different Armv8-A microar-
chitectures (Cortex-A53, Cortex-A72, and Cortex-A73) from four
different vendors (Broadcom, Qualcomm, HiSilicon, and Allwinner)

1

https://doi.org/10.1145/1122445.1122456


for hidden instructions. In addition to hardware implementations,
we also probed two Armv8-A emulators (QEMU and Arm Base
Fixed Virtual Platform). armshaker uncovered multiple hidden in-
structions in all of the tested targets. Further analysis showed that
the hidden instructions in the tested hardware platforms could be at-
tributed to bugs and backward compatibility measures in the Linux
kernel, rather than actual hardware bugs. For QEMU, the hidden
instructions were the result of bugs in its underlying Arm instruc-
tion decoder. In addition to hidden instructions, armshaker also
discovered bugs in commonly used disassemblers: the libopcodes
disassembler used by objdump and Capstone[13].

We did further analysis to identify the root causes of the un-
covered bugs, fixed them, and submitted patches to Linux, QEMU
and GNU binutils – enabled by all of them being open-source. Our
patches have been accepted by the respective projects.

Though armshaker did not find any hidden instruction in phys-
ical hardware, the results do reveal an interesting aspect of the
relation between the underlying ISA implementation and the oper-
ating system or system software. Specifically, the operating system
can induce hidden instructions in the system that, from a user’s
perspective, are indistinguishable from hidden instructions based
in hardware.

This paper was derived from the first author’s master’s thesis –
Probing the Armv8-A ISA for Hidden Instructions through Processor
Fuzzing – done in 2020 at NTNU under the direction of the second
author [16]. The key contributions of this work, summarized in this
paper, include:
• armshaker: We design and implement a portable and open-
source tool that automatically identifies divergent behavior of
undefined instructions in hardware and software implementa-
tions of Armv8-A ISA. armshaker is publicly available at [15].

• Hidden Instructions: We use armshaker to uncover software-
induced hidden instructions resulting from bugs in the Linux
operating system kernel and the QEMU processor emulator. We
also find bugs in two commonly used disassemblers: Capstone
and the libopcodes disassembler.

• Software Improvements: We identify the root causes of the
software bugs and submit patches to Linux, QEMU and GNU
binutils which have been subsequently accepted for inclusion in
the respective projects.

2 BACKGROUND AND MOTIVATION
armshaker targets Armv8 which is the latest version of the Arm
architecture. To cater to the needs of diverse market segments
ranging from supercomputers to low-power embedded devices,
Armv8 comes in three different architecture profiles: A, R, and
M. The M (microcontroller) profile targets low-power embedded
systems; the R (real-time) profile targets real-time systems; and the
A (application) profile targets mostly everything else where the
performance is a primary concern. This work focuses on A profile
and we therefore refer to the ISA as Armv8-A.

Armv8-A is a 64-bit architecture, in contrast to the 32-bit ar-
chitecture in the earlier versions. However, to provide backward
compatibility with Armv7-A, Armv8-A introduced the concept of
execution states each with their own instruction sets and processing
environment:

• AArch64: The new 64-bit execution state, supporting the A64
instruction set.

• AArch32: The backward compatible 32-bit execution state, sup-
porting the A32 and T32 instruction sets. The instruction set
in use depends on a particular bit (the T or Thumb bit) being
set or not in the Current Program Status Register (CPSR). This
execution state is almost identical to Armv7-A, with some minor
differences.

2.1 Instruction Sets
There are three instruction sets available in Armv8-A: A64, A32,
and T32. However, only one of these can be used at any given
time depending on the current execution state. The most relevant
part of the instruction sets to our work is the instruction encoding,
rather than the actual functionality available and how to use the
instructions to get that functionality. Therefore, we next discuss
the instruction encodings in these three instruction sets.

2.1.1 A64: The A64 instruction set was introduced in Armv8-A
and is used in the AArch64 execution state. It uses a significantly
different instruction encoding compared to the instruction sets
in earlier versions of the Arm architecture. Nevertheless, most of
the available functionality is the same as before. Furthermore, the
instruction width is also fixed at 32 bits like previous instruction
sets.

Consider Figure 1 as an example of an instruction encoding in
A64, namely for the ADD (immediate) instruction. The extended
mnemonic would be ADD Rd, Rn, #imm12, where Rd and Rn repre-
sent registers and #imm12 represents an immediate value, with the
functionality being that #imm12 is added to Rn and stored in Rd.

As the figure shows, although ADD (immediate) represents a
unique operation, it will have many different instruction encodings
depending on the values of its operands and options. The non-
changing part of the encoding that uniquely identifies the particular
operation is called the opcode (operation code) part, which in the
case of Figure 1 are the bits marked with binary values instead of
placeholder labels, namely bit 30 to 23.

sf 0 0 1 0 0 0 1 0 sh imm12 Rn Rd

31 30 29 28 27 26 25 24 23 22 21 10 9 5 4 0

op S

Figure 1: A64 encoding for ADD (immediate) instruction [1].

2.1.2 A32: A32 is one of the two instruction sets available in
AArch32 (together with T32) and is in many ways similar to the
Arm instruction set in Armv7-A and older versions. It is function-
ally similar to A64 and has the same fixed instruction length of
32 bits, but differs significantly in its encoding. One of the biggest
differences is that most of the instructions include a condition code
field which indicates whether the instruction should execute or not
depending on certain bits in the Current Program Status Register.

Comparing the A32 encoding of the ADD (immediate) instruc-
tion in Figure 2 with the A64 encoding of the same instruction in
Figure 1, we observe that the two differs in the opcode value, reg-
ister indicator lengths (resulting from A32 having fewer available
registers), operand ordering and the presence of the condition code.

2



!=1111 0 0 1 0 1 0 0 S Rn Rd imm12

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond

Figure 2: A32 encoding for ADD (immediate) instruction [1].

2.1.3 T32: T32 is the other instruction set available in AArch32 and
is equivalent to the Thumb instruction set in Armv7-A. The primary
difference between T32 and A32 is that T32 uses a variable-length
instruction encoding, as opposed to a fixed-length one. This is in-
tended to reduce code size and improve cache utilization, especially
for resource-constrained systems. T32 instructions are expanded
to the equivalent A32 instructions in the processor’s instruction
decoder at runtime, and otherwise share the same execution envi-
ronment.

The Thumb instruction set originally used a 16-bit fixed-length
encoding. However, because of the limited instruction space, an
extension was later introduced to support certain 32-bit long in-
structions, making the instruction set variable-width. This was
implemented by having the upper five bits of the encoding indi-
cate whether an instruction is 16-bit or 32-bit. In the case of 32-bit
instructions, a second half-word is fetched, making up the lower
half of the 32-bit instruction. Specifically, a 32-bit T32 instruction
is indicated by the upper five bits having a value greater than or
equal to 0b11101 (where the 0b prefix denotes a binary number).

The 16-bit T32 encoding of the ADD (immediate) instruction
can be seen in Figure 3, with the corresponding 32-bit T32 version
in Figure 4. Note that some T32 instructions like ADD (immediate)
have both 16-bit and 32-bit encodings, while others are exclusively
16-bit or 32-bit.

0 0 0 1 1 1 0 imm3 Rn Rd

15 14 13 12 11 10 9 8 6 5 3 2 0

Figure 3: 16-bit T32 encoding for ADD (immediate) [1].

1 1 1 1 0 i 0 1 0 0 0 S !=1101 0 imm3 Rd imm8

15 14 13 12 11 10 9 8 7 6 5 4 3 0 15 14 12 11 8 7 0

Rn

Figure 4: 32-bit T32 encoding for ADD (immediate) [1].

2.2 Unallocated Instructions
The maximum possible number of instructions in an instruction
set is determined by the number of available bits in the instruction
encoding. Since both A64 and A32 use a 32-bit encoding, they can
represent about 4 billion unique instruction encodings. T32 can
represent comparatively fewer unique encodings as some of the
instructions need to fit in only 16-bits. However, none of the instruc-
tion sets utilize all of the available instruction encodings. Rather,
there are chunks of unallocated encodings in each instruction set,
resulting from the encodings not being assigned any instruction.
Our analysis revealed that 64.3% of the encodings in A64 are un-
allocated, with the proportions being 12.2% in A32 and 31.6% in
T321. The reason for the big difference between A64 and A32 is

1Instead of manually searching the Architecture Reference Manual [1] to find
unallocated encodings, we used the libopcodes disassembler as a proxy to get these
numbers.

primarily that the condition code in the A32 encoding effectively
duplicates most of the defined instructions, reducing the amount of
unallocated instructions. T32 has a higher percentage than A32 due
to its lack of condition codes, but lower than A64 as it has a smaller
instruction space. armshaker aims to uncover hidden instructions
corresponding to these unallocated instruction encodings.

3 ARMSHAKER
armshaker is written in C and intended to run on the Linux op-
erating system kernel [17], both of which are widely supported
on most Armv8-A-based systems. Targeting Linux not only eases
armshaker development, but also enables a wide range of systems
to be probed without requiring any special hardware setup or soft-
ware configuration. Also, we have taken care to use as few external
dependencies as possible and generally avoid operating system
features not universally available, to increase operability across
platforms.

3.1 Overview
Conceptually, the execution flow of armshaker can be divided into
a set of recurring stages, as shown in Figure 5. First, some initial-
ization code is run before entering the main loop. Then, on every
successive iteration of the loop, a new instruction to be tested is
generated. The generated instruction is then disassembled using
an external disassembler, and the resulting disassembly is checked.
If the disassembly was successful – implying that the instruction is
defined – the loop continues with the next instruction. Otherwise
– in the case of it being undefined according to the disassembler –
the instruction is executed, and its result is checked. If an illegal
instruction signal (SIGILL) was received, then the loop is repeated
as this is the expected behavior. However, if another signal or no
signal at all was received, the instruction is marked as a hidden
instruction and subsequently logged, before moving on to the next
instruction.

3.2 Design Details
3.2.1 Initialization: The initialization stage does primarily two
things. First, it processes the options passed to armshaker on the
command line and sets the respective internal configuration vari-
ables. Then, it sets up the infrastructure needed for the following
stages. This involves configuring the disassembler, clearing log files,
initializing the instruction execution environment and so on.

3.2.2 Instruction Generation: A straightforward approach to in-
struction generation is to generate all possible bit combinations
for the instruction encoding. For the 32-bit instruction encoding
of Armv8-A, this would generate all bit combinations between
0x00000000 and 0xFFFFFFFF (where 0x denotes a hexadecimal
number), i.e. 4 billion instructions. Such an approach generates
each instruction/opcode multiple times with different source and
destination operands. For example, an add instruction would be
generated with all possible source and destination register combi-
nations. In contrast, to uncover hidden instructions, we need to test
an opcode only once to check whether the hardware can execute it
or not. Though this redundant instruction generation slows down
testing, we found that such an exhaustive search in the whole in-
struction space finishes in a reasonable time on modern processors.

3



Initialization Generate
instruction

Disassemble
instruction

Successful
disas.?

Execute
instruction

Received
SIGILL?

Log result

Yes

No

Yes

No

Figure 5: Execution flow of the armshaker loop.

Therefore, armshaker takes this simple approach for instruction
generation.

In addition to exhaustively searching the whole instruction space,
armshaker also supports searching only a specific range of the
instruction space through search masks. When a search mask is
applied, only the bits in the instruction encoding matching the
particular mask are incremented, with the remaining bits left un-
changed. This option is particularly useful when analyzing the
results from an exhaustive search. Another use of masked incre-
ment is for the variable-width T32 instruction set. Recall that T32
instructions with the upper five bits being lower than 0b11101 are
16-bit, while the remaining ones are 32-bit. To capture both widths
in a single search, all instructions are stored in a 32-bit variable
internally, with 16-bit instructions having the lower two bytes set
to 0 – equivalent to the lower half-word being zero. When incre-
menting an encoding, the upper five bits are first checked, and if
they indicate a 16-bit instruction, a masked increment is performed
on the upper half-word, leaving the lower half-word unchanged.
For 32-bit instructions on the other hand, no mask is applied. This
ensures a smooth transition from 16-bit to 32-bit instructions.

3.2.3 Disassembly: Since armshaker aims to uncover hidden in-
structions, it does not need to execute all the instruction encodings
generated by the previous stage, rather only the ones that are un-
documented/undefined in Armv8-A. Even if it were to execute all
the instruction encodings, we would still need a mechanism to
verify whether an illegal instruction signal (SIGILL) was expected
or not after executing a particular instruction. Therefore, it is nec-
essary to know which of the instruction encodings correspond to

undocumented/undefined instructions which requires looking up
Arm Architecture Reference Manual [1].

Instead of manually searching the reference manual for unde-
fined instructions, we use a disassembler as an automated reference
manual lookup mechanism. For that, armshaker passes each gen-
erated encoding to a disassembler and checks the result. If the
disassembly is successful – indicating that the particular instruc-
tion is in fact defined – the remainder of the loop is skipped and
we move on to the next encoding. Otherwise, in the case of the
disassembler failing to disassemble the instruction – indicating an
undefined instruction – the instruction is executed. Since the disas-
sembler only passes undefined instructions to the next stage, we
expect the hardware to generate an undefined instruction exception
for all the instructions.

By using a disassembler as a proxy to the Arm Architecture
Reference Manual, we make a fundamental assumption that the
disassembler faithfully represents the reference manual. However,
we discovered that this is not always the case even for the most
commonly used Arm disassemblers. There are several reasons for
this, with the most common ones being bugs in the disassemblers,
unsupported ISA extensions and inaccuracies in the interpretation
of the ISA specification.

Our initial implementation used the Capstone disassembler [13],
which is a framework using disassemblers from the LLVM project
in the back-end. Unfortunately, a lack of full Armv8-A support
combined with large amounts of instructions incorrectly being
marked as undefined made it unsuitable for our needs. We did not
investigate whether this behaviour was caused by Capstone itself
or the use of an older LLVM back-end. Instead, we opted for the
Arm disassembler in libopcodes – a part of the GNU binutils project
[8] – which is the same disassembler employed by the widely used
objdump utility. The disassembler in libopcodes had a much higher
accuracy compared to Capstone, possibly because Arm actively
contributes to its development. However, it was still not without
a few bugs which lead to some instruction disassemblies being
incorrect. We fixed these bugs and submitted patches, which are
already accepted, to the repository.

3.2.4 Execution: In the execution stage, a given instruction is ex-
ecuted to check whether its execution results in an undefined in-
struction exception, i.e. an illegal instruction signal (SIGILL) from
the kernel. If a SIGILL signal is received, armshaker continues to
execute the next undefined instruction as receiving SIGILL is the
expected behavior for undefined instructions. On the other hand, if
a different or no signal is received – indicating a hidden instruction
– the instruction is sent to the next stage for logging.

Executing an undefined instruction can have a wide range of
different side-effects, potentially corrupting armshaker itself. There-
fore, it is essential to isolate the instruction execution from the rest
of the armshaker process to the extent where the probability of
an instruction corrupting the armshaker execution environment is
sufficiently low. For this we support two execution isolation tech-
niques, namely page-based and ptrace-based isolation, each with
their own isolation degree and corresponding pros and cons.
Page-Based Isolation: Similar to [6], this technique executes an
instruction in the same process environment as armshaker, how-
ever in a dynamically allocated memory page with some boilerplate

4



code. First, in the initialization stage of armshaker, an executable
memory page is allocated with the mmap() system call and some
boilerplate code is loaded onto it for storing/restoring register val-
ues on entry/exit, resetting register values before execution, and a
placeholder for the instruction to be tested. Also, a signal handler
is set up which is triggered every time a signal is received from
the kernel and stores the signal number in a variable. Later, in ev-
ery iteration of the armshaker loop, the instruction to be tested is
written to the placeholder in the executable page and subsequently
executed before jumping back to the main loop. Whether the execu-
tion triggered the signal handler or not can then be determined by
reading the variable set by the signal handler. This variable stores
the signal number in the case of a trigger and zero otherwise. If
the signal stored in the variable is anything other than SIGILL, it
indicates a hidden instruction.

The isolation in this technique is primarily provided by the boil-
erplate code and having the executable page separate from the rest
of the armshaker code. Specifically, storing and restoring all regis-
ter values mitigates corruption of register values that should stay
unaltered according to the calling convention used, and resetting
all register values to zero before execution somewhat reduces side-
effects while ensuring deterministic results. Furthermore, having
the boilerplate code and test instruction in an executable page allo-
cated on the heap while keeping the armshaker code in read-only
pages reduces the risk of corrupting the armshaker address space.

A somewhat obscure but important detail for this method to
work is that the first-level instruction and data caches in the Arm
architecture are not coherent, meaning that an update to either
of them does not necessarily propagate to the other immediately.
This means that self-modifying code like described above – that is,
repeatedly writing to and executing a page – might lead to only the
data cache being updated, with the instruction cache containing an
older instruction. As a result, instead of executing the most recent
instruction, armshaker would execute whatever instruction was in
the page when the instruction cache was last updated, effectively
skipping over some instructions. To solve this problem, every time a
new instruction is written to the placeholder, armshaker writes the
data cache contents back to main memory and reloads them into
the instruction cache, such that the newest instruction is fetched.
This can be done with the __clear_cache() function in GCC.

While this technique works in most cases and performs well, the
isolation it provides is relatively weak. For example, any hidden
instruction changing the program counter or certain system regis-
ters can corrupt armshaker. While this rarely happened in practice
in our tests, to make armshaker more robust, we propose a second
technique based on process tracing functionality available in Linux.
Ptrace-Based Isolation: This execution isolation technique, as
the name suggests, is based on the ptrace() system call in Linux.
With ptrace, a process (the tracer) can trace another process (the
tracee), enabling the tracer to alter the tracee’s register content,
memory content and execution flow. Concretely, the technique
works by letting a separate child process execute the instructions to
be tested, with the main armshaker process using ptrace to modify
the child’s state on every iteration of the loop. This means that if
an instruction corrupts the child process, its state can simply be
reset or the process restarted without interrupting armshaker.

In ptrace-based isolation, armshaker, in the initialization stage,
uses the fork() system call to create an identical copy of itself,
which becomes the child process to be traced. The child process then
jumps to a function with an infinite loop. The loop contains three
instructions: first, a breakpoint instruction that stops execution
until resumed by the tracer; second, a placeholder instruction that
will be replaced with the instruction to be tested; and finally, a
branch instruction that jumps back to the breakpoint instruction.

After initialization and at the beginning of every iteration of
the main loop, the child will be in a stopped state and open for
modification by the main process. The main process then resets all
of the child’s registers, writes the instruction to be tested in the
placeholder, and resumes the child process. In response, the child
will execute the instruction. If executing the instruction generates a
signal (like SIGILL), the child will stop and notify the main process.
Otherwise, it will continue to the branch instruction, jump back to
the breakpoint instruction and stop again (also notifying the main
process). The main process can then retrieve the generated signal
to determine whether a SIGILL signal was generated or not and
take appropriate action, before continuing with the main loop.

The ptrace-based isolation method provides great isolation be-
tween the main armshaker process and the instruction execution
environment, owing to the inter-process isolation implicitly pro-
vided by Linux. It also has the added benefit of making it easier to
set and retrieve the state of the system before and after executing
an instruction, which can help in analyzing the behavior of hidden
instructions. However, the frequent use of ptrace() system calls
adds significant overhead to the total execution time. Therefore,
we recommend to use ptrace-based isolation primarily when page-
based isolation has failed for a given system or when analyzing a
subset of the instruction space.

3.2.5 Logging: If the execution of an instruction resulted in any-
thing other than a SIGILL signal, the instruction is marked as
hidden and subsequently logged. This is done in the final logging
stage and is intended to convey both the presence of hidden in-
structions and to give an overview of the state changes caused by
the execution of the hidden instructions.

The log uses a plain comma-separated values (CSV) format, with
each line corresponding to a single instruction. The first entry in
each line indicates the instruction, followed by the signal generated
by executing the instruction. After that a variable number of entries
follows, each representing a register value change in the state before
and after executing the instruction.

4 METHODOLOGY
While one ideally would like to test as many systems as possible,
we are limited by the hardware available at our disposal. However,
Armv8-A is widely used in consumer electronics and thus not par-
ticularly difficult to procure. In addition to hardware-implemented
processors, we also target a selection of Armv8-A emulators, which
can be regarded as software implementations of the ISA.

The full list of target systems is presented in Table 1. The first col-
umn lists the particular target systems, followed by the respective
chipset manufacturers in the second column. The chipset manu-
facturer is relevant because it usually indicates the manufacturer
of the processor, with potentially differing implementation details.

5



System Model Manufacturer Microarchitecture
Raspberry Pi 4 Model B Broadcom Cortex-A72
Orange Pi Lite 2 Allwinner Cortex-A53
Huawei P8 Lite HiSilicon Cortex-A53
Motorola Moto G5S Qualcomm Cortex-A53
Oculus Quest Qualcomm Cortex-A73
QEMU 5.0.0 (RPi3) N/A (virtual) Cortex-A53
Arm Base FVP N/A (virtual) Generic Armv8-A

Table 1: Target systems.

Finally, the last column presents the microarchitectures used in
these systems.

Each of the target systems can be briefly described as follows.
The Raspberry Pi 4 Model B and Orange Pi Lite 2 are single-board
computers, essentially concentrating a computer into a single credit
card-sized board. The Huawei P8 Lite and Motorola Moto G5S are
both Android-based smartphones. The Oculus Quest is a head-
mounted display (virtual reality headset) that runs Android and is
very similar to a smartphone, the user interface notwithstanding.
QEMU [2] is a commonly used open-source emulator capable of
emulating a wide range of systems, many of which are Arm-based.
In our particular tests, we use version 5.0.0 and emulate a Raspberry
Pi 3, but the underlying Armv8-A implementation is shared across
all emulated systems. Finally, we have the Arm Base Fixed Virtual
Platform (FVP) which is a proprietary emulator developed by Arm,
intended to be used for software development. There are various
FVPs available emulating different processor models, but the one
we use is the Base FVP that emulates a generic processor as opposed
to a particular model.

For all the target systems, we use armshaker to perform an ex-
haustive search of all three instruction sets (A64, A32 and T32),
except for the Motorola Moto G5S as its Android distribution runs
on a 32-bit kernel, which prevents us from testing the A64 instruc-
tion set on this particular device.

5 EVALUATION
This section presents and analyzes the results obtained by prob-
ing the target systems. We begin by listing the number of hidden
instructions marked for each system, followed by an analysis of
these instructions. Finally, we discuss the security implications of
the uncovered hidden instructions.

5.1 Hidden Instructions
The number of hidden instructions uncovered in each target system
are presented in Table 2. As the table shows, hidden instructions
were uncovered in all of the tested systems. However, note that a
hidden instruction in Table 2 does not corresponds to an unique
opcode, rather an unique instruction encoding which includes the
opcode, operands, and all other fields2. Consequently, an instruction
with variable operands or options may be marked multiple times.

After obtaining the raw results, the next step is to determine
the exact behavior and root cause of the hidden instructions. To

2As hidden instructions are not defined in the ISA reference manual, there is no
simple way to divide instruction encoding bits into opcode, operands, and other fields.

Target System Hidden Instructions
A64 A32 T32

Raspberry Pi 4 Model B 0 15 0
Orange Pi Lite 2 0 15 2,184
Huawei P8 Lite 0 15 0
Motorola Moto G5S N/A 15 736
Oculus Quest 0 15 2,184
QEMU 5.0.0 (RPi3) 0 69,647 69,632
Arm Base FVP 0 45 738

Table 2: Hidden instructions detected in the target systems.

achieve this, we start with the output log generated by armshaker
and use methods like looking for patterns shared between hidden
instructions, encoding similarities to existing instructions as docu-
mented in the Armv8 Architecture Reference Manual, execution
side-effect analysis, inspection of the underlying operating system
or emulator source code and so on.

5.2 Hidden Instruction Analysis
Our analysis reveals that all hidden instructions in the hardware
target systems can be attributed to bugs and backward compatibility
measures in the Linux kernel. For QEMU, the hidden instructions
are a result of bugs in its underlying Arm instruction decoder.
As such, we did not find any hidden instruction in the hardware
implementations themselves. Nonetheless, our results do show that
hidden instructions, as perceived by the system user, can also be
induced by the software running on the system and not only by
the hardware.

5.2.1 Linux Bugs: Most of the hidden instructions can be attributed
to three bugs and one backward compatibility measure in Linux.
All of these bugs are related to Linux kernel’s exception handling
mechanism. To better understand the root cause of the bugs, we
first present the exception handling mechanism of Linux kernel
before discussing the bugs themselves.
Exception handling in Linux: When an instruction causes the
processor to generate an exception, the execution is transferred
to the kernel. Then, the Linux kernel compares the instruction
that caused the exception (i.e. the instruction encoding) to a set
of predefined instruction hooks. Each hook contains, among other
things, a mask and a value. The mask is applied to the instruction
before comparing it against the value in the hook. In the case of a
match, the matched hook indicates how to handle the exception. If
none of the hooks match, Linux sends a SIGILL (undefined/illegal
instruction) signal to the offending process.

We observe that all of the hidden instructions induced by Linux
are a result of incorrect masks being used in various instruction
hooks. Specifically, the masks used for emulating the deprecated
SETEND (set endianness) instruction, certain breakpoint traps in A32
and T32 and a set of Uprobe traps (providing tracing support) are
all too wide, making Linux match more instructions than intended.
The details of each of these bugs are as follows:
T32 SETEND Emulation: Linux can emulate the SETEND instruc-
tion, as it is deprecated in Armv8-A. The instruction sets the endian-
ness of the system – indicating the byte-order used when operating

6



on multi-byte variables. For T32, the encoding for SETEND is exclu-
sively 16-bit wide and equals 0xb650 for the little-endian option
and 0xb658 for big-endian. Due to this 16-bit encoding, the cor-
responding Linux hook uses a 0x0000fff7 mask to get the lower
16 bits from the instruction encoding of the exception-causing in-
struction. However, recall that T32 uses variable length instruction
encoding with some instructions being 16-bit and others 32-bit
wide. As a result, if a 32-bit wide unallocated instruction causes an
exception, the SETEND hook will mask out the upper 16-bits; and
if the lower 16-bits match the SETEND encoding, the unallocated
instruction will be treated as a SETEND instruction.

As an example, consider the T32 instruction encoding
0xeaa0b650 which is a 32-bit instruction. However, looking up
this particular encoding in the Armv8 Architecture Reference Man-
ual reveals that it is unallocated. Nevertheless, Linux will execute it
as a SETEND instruction, since applying the instruction mask yields
0xeaa0b650 & 0x0000fff7 = 0x0000b650 – which matches the
instruction value in the hook. Effectively, the bug causes these un-
allocated 32-bits instructions to act as hidden SETEND instructions.

This incorrect matching accounts for all of the 2184 hidden
instructions found in T32 for the Orange Pi Lite 2 and Oculus Quest.
The reason that only these systems are affected and not the others
is that SETEND emulation has to be enabled when compiling the
kernel – or optionally setting the /proc/sys/abi/setend file to 1
during runtime – which was the case only for these two systems.
The other systems were not affected simply because they didn’t
have SETEND emulation enabled.

To fix the bug, we modified the mask to 0xfffffff7, which
makes it include the upper half of the instruction value. We sub-
mitted a patch with this fix to the Linux kernel which has been
included in both the official mainline kernel and older versions with
long-term support.
T32 Breakpoint Traps: The same problem as with the SETEND
hook also affects certain breakpoint hooks. A breakpoint instruction,
such as UDF #1 (encoding 0xde01), generates a SIGTRAP signal upon
execution. The corresponding Linux hook uses a mask 0xffff
which masks out the upper 16-bits of instruction encoding. As a
result, the undefined 32-bit T32 instructions where the lower 16-bits
are same as the encoding of breakpoint instructions, regardless of
their upper 16-bits, act as hidden breakpoint instructions.

This bug is present only in the 32-bit Linux version (the 64-bit
version uses a direct comparison without masking). It therefore
only appears on the Motorola Moto G5S and Arm Base FVP where
it accounts for 736 of the hidden instructions.

Similar to the SETEND bug, this bug is fixed by extending the
instruction mask of the hook to 0xffffffff. We also submitted
a patch with this fix to the Linux kernel and it has been accepted
by the maintainers of the Arm port of Linux and included into the
mainline kernel.
A32 Breakpoint Traps: The two bugs discussed above manifest
themselves only on T32, while A32 and A64 remain unaffected as
their Linux hooks use correct masks due to their exclusive 32-bit
instruction encoding. However, a similar bug appears in the break-
point hook for the UDF #16 instruction (encoding 0xe7f001f0) in
A32. Specifically, the hook uses a mask 0x0fffffff which masks
out the first four bits of the instruction encoding. These bits cor-
respond to the conditional code in A32 and define the conditions

that need to be true for the instruction to execute. Masking out
these bits leads to unconditional execution of the instruction. How-
ever, the Armv8 Architecture Reference Manual explicitly states
that UDF should be executed only if the condition code bits in the
encoding are 0xe. For all other cases, the encodings are unallocated.
In essence, the wrong mask causes these unallocated instructions
to execute as breakpoint instructions. This bug affects both 64-bit
and 32-bit kernels, and accounts for 15 of the hidden instructions
in A32 in each of the tested systems.

However, a deeper inspection of the related parts in the Linux
source code revealed that this behavior/bug is intentional, which
was confirmed through correspondence on the Linux Kernel Mail-
ing List [9]. The behavior is in fact a backward compatibility mea-
sure for Armv6 and earlier versions where the instruction encodings
corresponding to conditional UDF instructions were legal. As such,
due to differences in the specification of Armv6 and Armv8, this
behaviour leads to hidden instructions in Armv8.
Uprobe Traps: Finally, there are two bugs in Linux related to
a set of Uprobes hooks. Uprobes is a user-level tracing feature
offered by Linux, with two UDF instructions used for breaking and
single-stepping. The first bug is that in A32, these instructions
have the same behavior as the breakpoint instructions above in
that the condition code is ignored and some of the unallocated
instructions act as breakpoints. This accounts for an additional 30
hidden instructions.

The second bug affects T32. A bug in the status register mask of
the Uprobes hook makes the hook applicable to both T32 and A32.
There are two problems with this. First, the Uprobes source code
mentions that Thumb (T32) is not supported, therefore, it shouldn’t
be triggered from T32. And second, wrongly triggering the hook
causes two unallocated T32 instructions to be treated as hidden
tracing instructions.

This bug accounts for the two hidden instructions in T32 for the
Arm Base FVP. Out of all the tested systems, it is only present in
the Arm Base FVP simply because it was the only system with a
kernel compiled with Uprobes support. We have submitted a patch
with the fix to the Linux kernel that has yet to be reviewed.

5.2.2 QEMUBugs: After removing the hidden instructions induced
by Linux bugs, we end up with 69,632 hidden instructions in QEMU
for both A32 and T32. We used armshaker to analyze the side-
effects of these hidden instructions (like changes in register values)
and correlated them with the ISA reference manual. Our analysis
revealed that these hidden instructions correspond to the VMUL
(floating-point) and VQDMULL instructions – both performing
vector (SIMD) multiplication. Further analysis of the QEMU source
code revealed that the root cause of the hidden instructions is a pair
of bugs in the Arm instruction decode logic in QEMU. These bugs
make the decoder treat certain bits in the instruction encoding as
instruction options, while they should be a part of the opcode. This
essentially reduces the opcode bits while increasing the option bits,
which in turn makes certain unallocated instructions map to VMUL
or VQDMULL instructions.

For the VMUL (floating-point) bug, consider the encoding in
Figure 6. It’s apparent that only bit 20 indicates the operand size
option (sz). However, QEMU also includes bit 21 as a part of the

7



1 1 1 1 0 0 1 1 0 D 0 sz Vn Vd 1 1 0 1 N Q M 1 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

Figure 6: A32 encoding for floating-point VMUL [1].

size option, effectively executing the instruction even when bit 21
is 1, in which case it is unallocated.

1 1 1 1 0 0 1 0 1 D !=11 Vn Vd 1 1 0 1 N 0 M 0 Vm

31 30 29 28 27 26 25 24 23 22 21 20 19 16 15 12 11 10 9 8 7 6 5 4 3 0

size

Figure 7: A32 encoding for VQDMULL instruction [1].

Likewise, consider the encoding in Figure 7 for the VQDMULL bug.
For certain vector instructions, bit 24 is used for the U option, in-
dicating whether the instruction operates on signed or unsigned
numbers. For VQDMULL, however, this bit should always be 0, with 1
being unallocated. In spite of this, QEMU still executes the instruc-
tion as normal when U is 1.

These bugs account for the remaining hidden instructions iden-
tified in QEMU, and are present in both A32 and T32 as a result of
the two sharing much of the same vector decode logic, with the
main encoding difference being in the uppermost opcode bits. For
VMUL the location of the bit triggering the bug is the same for both
A32 and T32. For VQDMULL on the other hand, the bit triggering the
bug is bit 28 (alternatively, bit 12 of the upper half-word) in T32 as
opposed to bit 24 in A32, but the effect is otherwise identical.

We identified the root cause of both bugs and submitted corre-
sponding patches to QEMU. The VQDMULL patch has been accepted
to be included directly in the official development version of QEMU,
set to be a part of a future release. The VMUL patch on the other hand
will be included by the QEMU developers as part of an ongoing
refactoring of the relevant code.

5.3 Security Implications
The bugs in QEMU cause certain undefined instructions to be exe-
cuted as VMUL or VQDMULL. Such hidden instructions can be used by
programs to detect whether they are being emulated with QEMU.
This can be done by checking whether executing a particular hid-
den instruction results in undefined instruction exception or not.
Such emulator detection can be used to avoid dynamic analysis and
selectively execute malicious code. For example, if the application
detects the presence of an emulator it can decide not to execute
malicious code; while doing so in emulator absence. The risk is
exacerbated by the fact that QEMU is by far the most commonly
used Arm emulator and forms the basis for several Android mal-
ware analysis solutions. Although there are many other ways to
detect emulation – ranging from reading system information to
detecting performance traits particular to emulators – executing
only a single test instruction is significantly faster and less noisy.
For a proof of concept of this technique using one of the hidden
instructions identified, see the C program in Listing 1.

Similarly, the hidden SETEND instructions could be used as part
of an obfuscation scheme where the endianness of a program is
changed at runtime, using seemingly undefined instructions. This
can make static analysis of the program more difficult.

#include <stdio.h>
#include <signal.h>
#include <ucontext.h>

volatile sig_atomic_t handler_activated = 0;

void sigill_handler(int sig_num ,
siginfo_t *sig_info , void *uc_ptr)

{
handler_activated = 1;

// Skip the illegal instruction
ucontext_t* uc = (ucontext_t *) uc_ptr;
uc->uc_mcontext.arm_pc += 4;

}

int main()
{

struct sigaction s = {
.sa_sigaction = sigill_handler ,
.sa_flags = SA_SIGINFO

};

sigfillset (&s.sa_mask );
sigaction(SIGILL , &s, NULL);

// 'VMUL.F32 D0, D0, D0' with bit 21 set.
asm (".inst 0xf3200d10");

if (handler_activated == 0) {
printf("I'm being emulated .\n");

} else {
printf("I'm not being emulated .\n");

}

return 0;
}

Listing 1: QEMU detection code.

6 CONCLUSION
As hardware becomes the new venue for system security vulnera-
bilities, we are witnessing a growing number of attacks exploiting
well-known and documented hardware behaviour such as specula-
tion, cache and memory timings, etc. We observed that the security
exploits in undocumented hardware behaviour, such as hidden
instructions, can have even more severe consequences as such be-
haviour is rarely verified and protected against. To prevent attacks,
we need to first discover and understand such behavior.

To enable research in this direction, we introduced armshaker :
a tool that can exhaustively search the instruction space of the
A64, A32 and T32 instruction sets in the Armv8-A ISA for hidden
instructions. We used armshaker to uncover hidden instructions
in five different Armv8-A hardware platforms from four different
vendors, as well as two Armv8-A emulators. Interestingly, none
of the hidden instructions were due to bugs in physical hardware,
but rather bugs in the system software. However, for the system
user, the hidden instructions induced by system software bugs are
indistinguishable from those induced by hardware bugs themselves.

Though armshaker did not find any hidden instruction in the
hardware of the tested platforms, their existence cannot be ruled out
completely, given the diversity of available Arm processors. Con-
sequently, we make armshaker publicly available as open-source
software to enable users to audit their own systems for hidden
instructions.

8



REFERENCES
[1] Arm Limited 2019. Arm® Architecture Reference Manual - Armv8, for Armv8-A

architecture profile (ddi0487e ed.). Arm Limited. https://static.docs.arm.com/
ddi0487/ea/DDI0487E_a_armv8_arm.pdf

[2] Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 41. 46.

[3] Atri Bhattacharyya et al. 2019. SMoTherSpectre: Exploiting Speculative Execution
through Port Contention. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (London, United Kingdom) (CCS ’19).
Association for Computing Machinery, New York, NY, USA, 785–800. https:
//doi.org/10.1145/3319535.3363194

[4] G. Chen et al. 2019. SgxPectre: Stealing Intel Secrets from SGX Enclaves Via
Speculative Execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS P). 142–157.

[5] Robert R Collins. 1997. The Intel Pentium F00F Bug Description andWorkarounds.
Doctor Dobb’s Journal (1997).

[6] Christopher Domas. 2017. Breaking the x86 ISA. Black Hat USA (2017).
[7] Christopher Domas. 2018. Hardware Backdoors in x86 CPUs. Black Hat USA

(2018).
[8] The Free Software Foundation (FSF). [n.d.]. GNU Binutils. https://www.gnu.

org/software/binutils/

[9] Russell King and Robin Murphy. [n.d.]. Re: [RFC PATCH] arm: Don’t trap
conditional UDF instructions. https://lkml.org/lkml/2020/5/13/1295 (Linux
Kernel Mailing List).

[10] Paul Kocher et al. 2019. Spectre attacks: Exploiting speculative execution. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 1–19.

[11] Esmaeil Mohammadian Koruyeh et al. 2018. Spectre Returns! Speculation Attacks
Using the Return Stack Buffer. In Proceedings of the 12th USENIX Conference on
Offensive Technologies (Baltimore, MD, USA) (WOOT’18). USENIX Association,
USA, 3.

[12] Moritz Lipp et al. 2018. Meltdown. arXiv preprint arXiv:1801.01207 (2018).
[13] Nguyen Anh Quynh. 2014. Capstone: Next-gen disassembly framework. Black

Hat USA (2014).
[14] Yuriy Shiyanovskii et al. 2010. Process reliability based trojans through NBTI and

HCI effects. In 2010 NASA/ESA Conference on Adaptive Hardware and Systems.
IEEE, 215–222.

[15] Fredrik Strupe. 2020. armshaker: Processor fuzzer targeting the Armv8-A ISA.
https://github.com/frestr/armshaker

[16] Fredrik Strupe. 2020. Probing the Armv8-A ISA for Hidden Instructions through
Processor Fuzzing.

[17] Linus Torvalds. 2020. Linux (5.6). https://www.kernel.org/

9

https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf
https://static.docs.arm.com/ddi0487/ea/DDI0487E_a_armv8_arm.pdf
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1145/3319535.3363194
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
https://lkml.org/lkml/2020/5/13/1295
https://github.com/frestr/armshaker
https://www.kernel.org/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Instruction Sets
	2.2 Unallocated Instructions

	3 armshaker
	3.1 Overview
	3.2 Design Details

	4 Methodology
	5 Evaluation
	5.1 Hidden Instructions
	5.2 Hidden Instruction Analysis
	5.3 Security Implications

	6 Conclusion
	References

