
CoFaaS: Automatic Transformation-based
Consolidation of Serverless Functions

Truls Asheim
truls.asheim@ntnu.no

Norwegian University of Science
and Technology (NTNU)

Norway

Magnus Jahre
magnus.jahre@ntnu.no

Norwegian University of Science
and Technology (NTNU)

Norway

Rakesh Kumar
rakesh.kumar@ntnu.no

Norwegian University of Science
and Technology (NTNU)

Norway

ABSTRACT
The attractive property of decoupling deployment decisions
from application development has led to fast adoption of the
Function-as-a-Service (FaaS) cloud computing model. FaaS
applications are typically highly modular with each func-
tion having a specific purpose and well-defined interface as
this enables code reuse, simplifies maintenance, improves
testability, and provides language independence. To enable
these attractive features, FaaS applications often use Remote
Procedure Call (RPC) interfaces for inter-function commu-
nication — which comes at the cost of orders of magnitude
higher latency than native function calls. Prior works that
alleviate this overhead are unattractive because they either
require non-standard APIs, only support a single language,
or rely on specialized languages or runtimes.
Our key insight is that we can exploit the well-defined

RPC interfaces to perform code transformations that alleviate
inter-function communication overhead. We hence propose
CoFaaS which leverages this insight to consolidate FaaS func-
tions on top of a WebAssembly runtime and thereby avoid
accessing the network layer when functions are deployed
on the same compute node. Our evaluation shows that this
strategy is highly effective and reports that CoFaaS reduces
inter-function communication latency by up to 100× and
application-level request round-trip time by up to 6×.

1 INTRODUCTION
Function-as-a-Service (FaaS) computing is becoming an in-
creasingly popular cloud computingmodel that simplifies the
cloud application lifecycle by moving critical decisions about
application deployment from the developer to the provider.
The unit of composition in the FaaS model is a functionwhich
is triggered based on specific events, such as an incoming
HTTP request. A function usually has a single well-defined
purpose and interface as this promotes code reuse, simpli-
fies maintenance, and enhances testability [21]. Larger FaaS
applications are built by composing individual functions.
A key advantage of the FaaS computing model is that

applications can be composed of functions written in any
language. Language independence is attractive for three rea-
sons. Firstly, it allows a function to be written in the language

that supports the purpose of the function in the best pos-
sible way. Secondly, it allows applications to be gradually
rewritten and ported to other languages function by function.
Finally, it allows applications to continue relying on tested
and stable units of functionality even if the implementation
language of other parts of the application changes.

When developing traditional monolithic applications, com-
bining languages is typically cumbersome because it requires
crufty low-level foreign function interfaces that are complex
and error-prone to use. In FaaS, programming language inter-
operability is achieved by design. This is because FaaS func-
tions use highly abstract and language-independent Remote
Procedure Call (RPC) interfaces to communicate across a net-
work fabric, for example Google’s gRPC [9]. Enabling func-
tions to communicate, regardless of language and internal
implementation details, fundamentally requires that external
interfaces are specified in a formal, language-independent,
and declarative manner. Modern RPC interfaces hence pro-
vide Interface Definition Languages (IDLs) to specify the
contract of each function, i.e., encoding the specifics of the
calls that the function supports. Code generators then take
the IDL definition as input and outputs a concrete function
interface.
Unfortunately, FaaS’ attractive properties of simplified

deployment, language-independence, and modular design
come with a severe performance penalty, in part due to its
reliance on RPC for inter-function communication. Whereas
a local function call in a monolithic application incurs a la-
tency of less than a single microsecond, an RPC call in a
FaaS application can incur a latency of several milliseconds
— a difference of several orders of magnitude. When a client
issues a RPC request, the request is first serialized to the RPC
wire format, then the serialized request is sent across the
network, and on the receiver’s side, the request is deserial-
ized and processed. Each of these steps takes time, however,
the primary contributor to the overhead of issuing an RPC
request comes from accessing the network transport layer.
This inter-function communication starts to dominate the
end-to-end latency of real-world applications with deep func-
tion chains and frequent RPCs where the communication
latency has to be paid multiple times.

Alleviating inter-function communication overheads in
FaaS applications is hence critically important, and a rich
body of prior work has investigated this issue [8, 10, 12, 13,
17, 18]. While these proposals effectively reduce communica-
tion latencies, they do so by relinquishing one or more of the
properties that make FaaS attractive in the first place. In par-
ticular, they either 1) provide a custom and non-portableAPI
demanding that existing functions need to be rewritten, 2) re-
strict FaaS applications to be implemented in a single lan-
guage or 3) propose entirely new FaaS programming models
or runtime environments that do not readily integrate with
the current cloud computing platforms. Commercial offer-
ings that aim to effectively chain function invocations such
as AWS Step Functions [7] and Knative Eventing [11] require
developers to adhere to platform-specific APIs for commu-
nication. This limits seamless function portability across
applications and imposes a vendor lock-in on applications.

There is hence a need for an approach that reduces inter-
function communication overheadwhile using standardAPIs,
retaining language independence and being easily integrat-
able with current cloud computing platforms — and our
goal in this work is to provide such a system. Towards that
end, we make a key insight that inter-function RPC commu-
nication interfaces are statically defined. More specifically,
the developer specifies the interface of each function using
an established IDL which means that we have significant
leeway in generating function interfaces while respecting
the IDL specification. In particular, accessing the network
layer — which we demonstrate is the key contributor to inter-
function communication overhead — is entirely unnecessary
when the functions are deployed on the same compute node.

We hence propose CoFaaS which automatically consoli-
dates FaaS functions — while respecting the semantics of the
function’s IDL specification — and thereby completely avoids
accessing the network layer when functions are scheduled
on the same node. More specifically, CoFaaS first transforms
the IDL description used by the target RPC interface to We-
bAssembly Interface Types (WIT). This enables us to lever-
age the WebAssembly (Wasm) ecosystem and co-locate FaaS
functions on a single Wasm runtime; each function is hosted
in its own container to maintain isolation. In this way, Co-
FaaS uses the Wasm runtime to provide inter-function com-
munication and thereby avoids accessing the network layer
when functions are deployed on the same node. Our eval-
uation shows that this strategy yields significant speedups.
CoFaaS reduces inter-function communication latency by
up to 100× and application-level request round-trip time by
up to 6×. The overhead of applying CoFaaS in production
scenarios is minimal because it is fully automatic and only
slightly increases compilation and deployment times.

To summarize, we present the following key contributions:

• We observe that the well-defined interface definitions
of existing FaaS applications provide significant lee-
way in how to generate function interfaces and that
this, in turn, can be leveraged to implement powerful,
automated transformations of FaaS applications.

• We exploit the above insight to design CoFaaS, the
first automatic function transformation framework
that significantly reduces inter-function communica-
tion latencies while being standard API compliant,
language-independent and compatible with current
cloud computing platforms.

• We demonstrate that CoFaaS yields significant speed-
ups, i.e., it reduces inter-function message latency by
up to 100× and application request round-trip time by
up to 6×.

2 BACKGROUND ONWEBASSEMBLY
WebAssembly (Wasm) [6] is a portable bytecode format that
originally targeted delivering high-performance compiled ap-
plications to web browsers. However, since none of Wasm’s
features explicitly targets web pages, it is also suitable as a
general purpose bytecode format. The introduction of the
WebAssembly System Interface (WASI) gives Wasm POSIX-
like capabilities and allows Wasm programs to run outside
the browser. A particularly appealing property of Wasm is
the increasingly large number of programming languages
that supports it as a target.
The WebAssembly Component Model [2] is a recent ad-

dition to the Wasm ecosystem that turns a compiled Wasm
module into a portable, embedded, and composable com-
ponent with a formally defined external API. A goal of the
component model is, therefore, to allow developers to build
language-independent applications that are composed of
several isolated components.

Following this definition, the scope and purpose of aWasm
Component in this regard is the same as a FaaS function. The
Wasm Component mode even comes with its own dedicated
IDL known as WebAssembly Interface Types (WIT). A key
observation, in this regard, is that IDL’s that are used to
specify the interfaces of FaaS functions, such as Protobuf for
gRPC, are easily mapped to WIT.

Currently programs compiled from Rust, C/C++, Go, and
Java are supported by theWasm component model, but there
is no limitation that prevents further languages from being
supported [5].

3 COFAAS
To describe CoFaaS, we will use a simple two-function FaaS
application, called ProdCon (Producer-Consumer). The ap-
plication is shown in Figure 1, and its functionality is simple:

Producer Consumer

Consume
request

Invocation
client

n requests
m KB

Hello
request

FaaS application

Figure 1: FaaS application used for evaluating CoFaaS

when the Producer function receives a request from the Invo-
cation Client it sends one or more requests to the Consumer
function. The size of the request can be varied and it does
not need to have any particular structure.

3.1 IDL mapping
As mentioned in Introduction, a FaaS function must have a
contract that specifies how it interacts with the surrounding
world. For this purpose, it is common to use Interface Defini-
tion Languages that formally define a function’s inputs and
outputs. An IDL is purely declarative, a key reason for their
language-independence, and therefore they rely on code
generators to be turned into a usable interface. In practice,
several different IDLs are in use by real-world FaaS appli-
cations, two notable examples being Protobuf [16], used by
Google’s gRPC [9], and Apache Thrift [1]. Currently, CoFaaS
only supports gRPC but there is no fundamental limitation
preventing other IDLs from being supported. In the follow-
ing, we will detail how the transformation from Protobuf to
Wasm’s WIT is done.

Figure 2 shows an example of how two gRPC interfaces,
marked by the blue and green shades, are transformed into
their equivalent WIT definitions. Referring to the ProdCon
application of Figure 1, the Producer function exports the
helloworld protocol and imports the prodcon protocol. The
Consumer function only exports the prodcon protocol. The
interfaces exported by a function can be called by other
functions whereas the interfaces imported by a function can
be used to call another function exporting the same interface.

In Figure 2 (left), the gRPC interface of prodcon consists
of two messages: ConsumeByteRequest and ConsumeByte-
Response. Additionally, it defines a single service Producer-
Consumer that defines a single method named ConsumeByte.
To put this in the terminology of a conventional program,
a function exporting the prodcon interface will expose a
public API containing the ConsumeByte function that takes
a struct of type Consume-ByteRequest as an argument and
returns a struct of type ConsumeByteReply.

Next, we describe how the WIT interface on the right is
generated. The WIT generator takes all of the protocols used
by functions in an application and does the following: a) it
maps each protocol to a WIT interface and b) it generates
a WIT world for each function in the application. Further,
it generates a world called top-level that defines the pub-
lic interface of the whole application. A WIT world repre-
sents the entire public interface of a function, as such, we
see that the world corresponding to the producer function,
producer-interface, imports the producer-consumer in-
terface enabling the Producer function is able to call the
Consumer function. It exports the greeter interface as this
is the external interface of the application.

For each interface generated, the WIT notion of a record
corresponds to a message in gRPC and services are repre-
sented as a sequence of function definitions. We also note the
addition of a init-component function. This method calls
the main method of the original FaaS functions to perform
necessary initialization of the function. When a CoFaaS-
transformed application is loaded, all of its comprising func-
tions chain-calls their init-component methods.

3.2 FaaS Function to CoFaaS Component
The CoFaaS transformation takes each FaaS function and
transforms it into a different, but analogous, a CoFaaS com-
ponent. As Figure 3 shows, this transformation enables the
functions running in separate containers in native FaaS to
share a runtime on the same host inWebAssembly. To ensure
that we preserve the semantics of the original functions, Co-
FaaS seeks to change the implementation code of the original
functions as little as possible. However, since the original
code of the FaaS functions 1) expects to run as a separate
server process that listens to a network request and 2) use
the API generated by the gRPC code generator for commu-
nicating with the outside world, we can not entirely avoid
minor changes to the application code.
The code generated by the default gRPC generator uses

networked RPC calls for communication among functions.
When transforming a FaaS function to a CoFaaS component,
we eliminate and replace this RPC-backed communication.
At the same time, to minimize the changes to the original
code, we also need to maintain compatibility with the API
produced by the gRPC code generator. To achieve this, we im-
plement a custom gRPC code generator that generates code
conforming to the same API as the gRPC-generated code but
replaces network-backed RPC calls with local function calls.
Additionally, the interface code that we generate contains
a small wrapper that translates between the data structures
passed from theWasm component call and the gRPC-defined
data structures that are used by the implementation code.

package cofaas:application
interface greeter {
 record hello-request {
 name: string,
 }

 record hello-reply {
 message: string,
 }

 say-hello: func(arg:
 hello-request) ->
 result<hello-reply, s32>

 init-component: func()
}

interface producer-consumer {
 record consume-byte-request {
 value: list<u8>,
 }
 record consume-byte-reply {
 value: bool,
 length: s32,
 }

consume-byte: func(arg: consume-byte-
request) ->
 result<consume-byte-reply, s32>

 init-component: func()
}

world producer-interface {
 import producer-consumer

 export greeter
}

world consumer-interface {
 export producer-consumer
}

world top-level {
 export greeter
}

syntax = "proto3";

package helloworld;

service Greeter {
 rpc SayHello (HelloRequest)
 returns (HelloReply) {}
}

message HelloRequest {
 string name = 1;
}

message HelloReply {
 string message = 1;
}

syntax = "proto3";

package prodcon;

service ProducerConsumer {
 rpc
ConsumeByte(ConsumeByteRequest)
 returns (ConsumeByteReply) {}
}

message ConsumeByteRequest {
 bytes value = 1;
}

message ConsumeByteReply {
 bool value = 1;
 int32 length = 2;
}

helloworld.proto prodcon.proto

Figure 2: Example showing how gRPC (left) is transformed to the Wasm Interface Type (WIT) (right).

FaaS
function

Aw

Native FaaS application

OS

Container Container

gRPC
interface

CoFaaS
component

CoFaaS
component

Aw

CoFaaS application

OS

WebAssembly host

WIT
interface

Native function

gRPC IDL

Implementation

CoFaaS function

WIT IDL

gRPC compatibility
Interface

Implementation

Rewrite

Transform

Generate

FaaS
function

1

2

Figure 3: CoFaaS transformation.

Finally, we need to deal with now redundant library calls.
For example, a function using gRPC for communication uses
the following code for initializing a connection to a server.
conn, err := grpc.Dial(addr, grpc.WithBlock(), [...])
[...]
client := pb_client.NewProducerConsumerClient(conn)

The resulting client object holds a interface that can be
used to communicate with the Consumer process in Figure 1.
The first call to grpc.Dial initializes a network connection
that is used as the transport for the RPC call. In our case,
initialing this networking connection is not needed. As we
aim to minimize the changes to the original function code,

rewriting it to remove the call to grpc.Dial is not an attrac-
tive option. Therefore, we introduce our own stubbed gRPC
library replacement that provides a simple nop implementa-
tion of the Dial function defined as follows
func Dial(target string, opts ...interface{})

(*ClientConn, error) {
return &ClientConn{}, nil

}

This library stubbing technique allows us to change the
behavior of the function without directly re-writing critical
parts of its code. To make the code use our stubbed library,
we simply change the gRPC import of the client code to use
it instead of the standard one. We also provide a stubbed
version of the built-in Go net library.

Currently, we always replace imports of these libraries
with our stubbed versions. For cases where all gRPC calls are
transformed to local CoFaaS calls this works well. However,
functions may want to open network connections for other
reasons. To support this, one can add a code analysis step to
the code transformation that determines which libraries the
specific gRPC calls are related to and only replaces the ones
that we want to turn into local CoFaaS calls.
The final step is to generate the Wasm host wrapper 1○

that hosts a Wasm runtime and will load and run the CoFaaS
application. This host wrapper exposes a gRPC interface cor-
responding to the public interface of the FaaS application.
When requests are received by this wrapper, they are trans-
formed into a call to the WIT bindings of the first function
of the CoFaaS application.

3.3 Putting it all together
In summary, following are the steps for applying the CoFaaS
transformation to a FaaS application. We emphasize that all
of these steps are completely automated.

(1) The WIT code generator is invoked to transform the
gRPC protocols used by the FaaS functions to a WIT
interface describing the entire application Section 3.1

(2) For every FaaS function, we generate bindings for its
corresponding WIT world and use our custom gRPC
code generators to generate a compatibility layer be-
tween the gRPC API used by the function implemen-
tation and the WIT bindings used for communicating
within the CoFaaS application

(3) Then, we apply a set of transformations to the imple-
mentation code of the function. These transformations
make the code use the replacement gRPC API that we
generate and make the code use our stub libraries to
disable undesired functionality

(4) Finally, we generate the Wasm host wrapper that ex-
poses the external interface of the FaaS application
over gRPC and loads and runs the CoFaaS application.

To add support for a new language in CoFaaS, only steps
2 and 3 above need to be re-implemented. Steps 1 and 4 are
generic and doesn’t change regardless of the function im-
plementation language. Current, CoFaaS supports applying
this transformation to functions written in Go automatically.
For Rust, we manually rewrite function code in a way that
is identical to the automated process.

4 EVALUATION
4.1 Methodology
The benchmarks were executed on an Intel Xeon E3-1275
v6 with 4 HT cores clocked at 3.8 GHz with 64 GB of RAM
and SSD drives running Fedora 37. We disabled frequency
scaling, turbo boost and swap space during the experiments.

We are using a two-process configuration, depicted in Fig-
ure 1. For every client request, the producer process sends
𝑛 requests of𝑚 KB to the consumer process. We evaluate
values of 1, 10 and 20 for 𝑛 and, where possible, values from
20 to 29 for 𝑚. CoFaaS only optimizes the inter-function
communication latency, i.e., the latency occurring when the
producer process in Figure 1 calls the consumer process.
Therefore, adjusting the value of 𝑛 (request repetitions) al-
lows us to estimate the performance impact of CoFaaS on
larger applications that perform a variable number of inter-
function requests. We refer to requests between different
functions within an application as inter-function requests.
The application and invocation client are adapted from [20].

We evaluate two functionally equivalent implementations
of the application in Figure 1 written in the languages Go [3]
and Rust [4], respectively. The key distinction between the
two languages is that Go relies on a managed runtime for
memory management, i.e. Garbage Collector (GC), whereas
Rust inserts compile-time instructions to handle memory.

Since languages using managed runtimes have different per-
formance characteristics and platform requirements than
unmanaged languages, our experiments demonstrate that
the CoFaaS is effective in both cases.
Compilers, with Wasm targets other than web browsers,

need to support the WebAssembly System Interface (WASI).
For Rust, Wasm support is generally good and its compiler
supports a usable WASI target. However, the WASI target of
the mainline Go compiler is currently not supported by the
Wasm component model. Instead, we are limited to using
the TinyGo compiler which primarily targets small embed-
ded devices. Therefore, it is positioned at a different design
point than a compiler targeting general-purpose systems. In
particular, its garbage collector implementation is optimized
for code size rather than speed causing its GC performance
to trail the mainline Go compiler [19]. Because of this, our
example application implemented in Go is heavily penal-
ized when executed on Wasm. Therefore, we disable GC for
our Go benchmarks. Naturally, this limits how long we can
run our benchmarks for and the payload sizes we can use.
When running on Wasm, we are further limited by the cur-
rent Wasm specification only supporting 32-bit pointers [6].
In our case, this means that we can only evaluate our Go
application with a payload size of up to 16KB, as the experi-
ment otherwise runs out of memory. These limitations are
unrelated to CoFaaS, and, at the time of writing, efforts are
underway to alleviate both of these limitations [14, 15].
For the round-trip-time benchmarks (Section 4.2), we in-

voke 6,000 requests back-to-back for every configuration. We
chose this number of requests to get a representative number
of data points while not exceeding memory capacity in the
non-GC configurations. For evaluating the latency of inter-
function requests, we report the mean of 100 inter-function
requests and we repeat each experiment 100 times.

4.2 Round-trip latency
The round-trip latency is defined as the time it takes for a
client to receive the reply for a request that it sends. The
speedups achieved by the CoFaaS optimized application over
the native baseline are shown in Figure 4. The blue/shaded
boxes mark the median request payload size as observed
from traces of real-world FaaS deployments on the Azure
cloud [13] and is hence a notable data point. We run the Rust
benchmarks with payload sizes from 1KB to 512KB and Go
benchmarks with sizes from 1KB to 16KB. Due to the GC
limitations outlined in Section 4.1, Go benchmark cannot run
with payloads of more than 16KB. In both cases, we perform
1, 10 and 20 inter-function calls per client request.

Figure 4 shows that the payload size does not impact con-
figurations that issue only a single inter-function call, i.e.,
CoFaaS consistently yields speedups of 2.75× and 1.75× for

Go Rust

1 2 4 8 16 1 2 4 8 16 32 64 128 256 512

1

2

3

4

5

6

Inter-Function request payload size (KB)

S
p
e
e
d
u
p
 N

a
tiv

e
 t
o
 C

o
F

a
a
S

Repeats

1
10
20

Figure 4: The round-trip latency of issuing a request to our example application.

Go Rust

1 2 4 8 16 1 2 4 8 16 32 64 128 256 512

0

25

50

75

100

Inter-function request payload size (KB)

In
te

r-
fu

n
c
tio

n
 r

e
q
u
e
st

 la
te

n
cy

 s
p
e
e
d
u
p

Figure 5: The speedups of a single request.

Go and Rust, respectively. The reason is that a single inter-
function call accounts for a moderate but significant frac-
tion of the complete request round-trip time. Thus, as we
increase the number of inter-function calls, the achieved
speedup also increases. Peak speedups are achieved when an
inter-function 1KB request is repeated 20 times, yielding a
5.9× speedup for Go and 5.2× for Rust. This shows that the
beneficial impact of CoFaaS is larger for applications that
perform a lot of inter-function requests.

4.3 Inter-Function Request Latency
Next, we investigate the latency of individual inter-function
requests; the primary target of CoFaaS. Figure 5 shows the
speedups of the CoFaaS optimized application over the na-
tive baseline when measuring the latency of a single request.
Compared to the results in Figure 4, the speedups are signifi-
cantly higher as this measurement bypasses constant factors
involved in every request issued to the application.

This result cements that CoFaaS is highly effective at re-
ducing the latency of inter-function calls in serverless appli-
cations. For the Rust application with a 1KB request payload
size, we see a 100× speedup. Similar to our round-trip time
evaluation, we see diminishing returns when increasing pay-
load sizes. We can understand this trend using the same
intuition as before; for larger payload sizes, the time needed
to transfer the request payload data becomes dominating
regardless of the transfer method used.

4.4 Scalability
We now discuss an important aspect of the FaaS computing
model: the ability to elastically scale additional function in-
stances as needed and execute multiple smaller functions in
parallel. In FaaS, this is easily achieved and is a side-effect
of the function-level granularity in FaaS and the RPC-level
function communication. The idea is, on load spikes, we can
easily spawn additional instances of a function to handle
the load. Additionally, we can distribute functions across

several nodes as the network-backed RPC interfaces used
for communication naturally enable this.

CoFaaS does not currently support function-level scaling
in FaaS applications. This is due to several reasons. First of
all, Wasm currently has no support for threads. Secondly, we
do not support to optionally maintain networked coupling
of FaaS functions when multi-node processing is needed. It
is important to note that none of these limitations are fun-
damental to CoFaaS. Efforts are under way to add supports
for threads to Wasm. This will allow CoFaaS to orchestrate
function to run in parallel when this is desirable. Further-
more, optionally keeping the network coupling of functions
in some cases is simply a matter of additional engineering.

4.5 Security implications
The security of a CoFaaS-transformed application is equiva-
lent to the native FaaS application because the WebAssembly
component model gives a separate memory space to each
component and no other resources are shared. Therefore, the
components do not have direct access to the memory spaces
of each other, thus providing isolation. This means that the
fundamental security assumptions of an application are not
changed by applying the CoFaaS transformation.

5 CONCLUSION
We have now presented CoFaaS which exploits the well-
defined RPC interfaces of FaaS applications to automatically
consolidate functions on top of a Wasm runtime — thereby
alleviating inter-function communication overhead by not
accessing the network layer when functions are scheduled on
the same compute node. Our evaluation showed that CoFaaS
is highly effective and reduces inter-function communication
latency by up to 100× and application-level request round-
trip time by up to 6×.

REFERENCES
[1] [n. d.]. Apache Thrift. https://thrift.apache.org/. Accessed: 2023-10-19.
[2] [n. d.]. Componet Model design and specification. https://archive.ph/

jHHgn. Accessed: 2023-10-18.
[3] [n. d.]. The Go Programming Language. https://go.dev/. Accessed:

2023-10-19.
[4] [n. d.]. Rust Programming Language. https://rust-lang.org/. Accessed:

2023-10-19.
[5] [n. d.]. wit-bindgen readme. https://archive.ph/wjeV2. Accessed:

2023-10-19.
[6] Andreas Rossberg (editor). 2022. WebAssembly Core Specification.

Technical Report. W3C. https://www.w3.org/TR/wasm-core-2/
https://webassembly.github.io/spec/core/_download/WebAssembly.pdf.

[7] AWS. 2024. What is AWS Step Functions? https://docs.aws.amazon.
com/step-functions/latest/dg/welcome.html. Accessed: 2024-03-10.

[8] Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre
Sutra, and Pedro García-López. 2019. On the FaaS Track: Building
Stateful Distributed Applications with Serverless Architectures. In
Proceedings of the 20th International Middleware Conference (Davis, CA,

USA) (Middleware ’19). Association for Computing Machinery, New
York, NY, USA, 41–54. https://doi.org/10.1145/3361525.3361535

[9] gRPC. [n. d.]. A high performance, open source universal RPC frame-
work. https://grpc.io/. Accessed: 2023-10-19.

[10] Zhipeng Jia and Emmett Witchel. 2021. Nightcore: Efficient and Scal-
able Serverless Computing for Latency-Sensitive, Interactive Microser-
vices. In Proceedings of the 26th ACM International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(Virtual, USA) (ASPLOS ’21). Association for Computing Machinery,
New York, NY, USA, 152–166. https://doi.org/10.1145/3445814.3446701

[11] Knative. 2024. What is AWS Step Functions? https://knative.dev/docs/
eventing/. Accessed: 2024-03-10.

[12] Swaroop Kotni, Ajay Nayak, Vinod Ganapathy, and Arkaprava Basu.
2021. Faastlane: Accelerating Function-as-a-Service Workflows. In
2021 USENIX Annual Technical Conference (USENIX ATC 21). USENIX
Association, 805–820. https://www.usenix.org/conference/atc21/
presentation/kotni

[13] Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan
Minocha, Sameh Elnikety, Saurabh Bagchi, and Somali Chaterji. 2022.
Wisefuse: Workload Characterization and Dag Transformation for
Serverless Workflows. Proc. ACM Meas. Anal. Comput. Syst. 6, 2, Arti-
cle 26 (jun 2022), 28 pages. https://doi.org/10.1145/3530892

[14] Mossaka. [n. d.]. wit-bindgen github issue 499: Go bindgen todos.
https://archive.ph/mjnRV. Accessed: 2023-10-18.

[15] WebAssembly Propsals. [n. d.]. Memory64 Proposal for WebAssembly.
https://archive.ph/wpvrp. Accessed: 2023-10-18.

[16] Protobuf. [n. d.]. Protocol Buffers. https://protobuf.dev/. Accessed:
2023-10-19.

[17] Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, 419–433.
https://www.usenix.org/conference/atc20/presentation/shillaker

[18] Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. 2020. Cloudburst: Stateful Functions-As-A-service. Proc.
VLDB Endow. 13, 12 (jul 2020), 2438–2452. https://doi.org/10.14778/
3407790.3407836

[19] TinyGo. [n. d.]. Go language features. https://archive.ph/AFlUi. Ac-
cessed: 2023-10-14.

[20] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion,
and Boris Grot. 2021. Benchmarking, Analysis, and Optimization of
Serverless Function Snapshots. In Proceedings of the 26th ACM Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’21). ACM. https://doi.org/10.1145/
3445814.3446714

[21] Christopher L. Williams, Jeffrey C. Sica, Robert T. Killen, and
Ulysses G.J. Balis. 2016. The Growing Need for Microservices in
Bioinformatics. Journal of Pathology Informatics 7, 1 (2016), 45.
https://doi.org/10.4103/2153-3539.194835

https://thrift.apache.org/
https://archive.ph/jHHgn
https://archive.ph/jHHgn
https://go.dev/
https://rust-lang.org/
https://archive.ph/wjeV2
https://www.w3.org/TR/wasm-core-2/
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://docs.aws.amazon.com/step-functions/latest/dg/welcome.html
https://doi.org/10.1145/3361525.3361535
https://grpc.io/
https://doi.org/10.1145/3445814.3446701
https://knative.dev/docs/eventing/
https://knative.dev/docs/eventing/
https://www.usenix.org/conference/atc21/presentation/kotni
https://www.usenix.org/conference/atc21/presentation/kotni
https://doi.org/10.1145/3530892
https://archive.ph/mjnRV
https://archive.ph/wpvrp
https://protobuf.dev/
https://www.usenix.org/conference/atc20/presentation/shillaker
https://doi.org/10.14778/3407790.3407836
https://doi.org/10.14778/3407790.3407836
https://archive.ph/AFlUi
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.1145/3445814.3446714
https://doi.org/10.4103/2153-3539.194835

	Abstract
	1 Introduction
	2 Background on WebAssembly
	3 CoFaaS
	3.1 IDL mapping
	3.2 FaaS Function to CoFaaS Component
	3.3 Putting it all together

	4 Evaluation
	4.1 Methodology
	4.2 Round-trip latency
	4.3 Inter-Function Request Latency
	4.4 Scalability
	4.5 Security implications

	5 Conclusion
	References

